
Humphrys, Mark (2001), The World-Wide-Mind: Draft Proposal, Dublin City University, School of Computer Applications, Techni

cal Report no. CA-0301.

The World-Wide-Mind:

Draft Proposal

Mark Humphrys

Dublin City University, School of Computer Applications,

Glasnevin, Dublin 9, Ireland.

tel (+353 1) 700-8059, fax (+353 1) 700-5442

humphrys@compapp.dcu.ie

http://www.compapp.dcu.ie/~humphrys/

This is a first draft of ideas for the WWM system, as at Feb 2001.

Further revisions will not appear here, but rather in a number of forthcoming papers.

http://www.compapp.dcu.ie/CA_Working_Papers/wplist01.html
http://www.compapp.dcu.ie/CA_Working_Papers/wplist01.html
http://www.compapp.dcu.ie/~humphrys/

Abstract

In the first part of this paper, a change in methodology for the future of AI and Adaptive Behavior research is

proposed. It is proposed that researchers construct their agent minds and their agent worlds as servers on the

Internet. 3rd parties will use these servers as components in larger systems. In this scheme, any user on the

Internet will be able to (a) select multiple minds from different remote "mind servers", (b) select a remote

"Action Selection server" to resolve the (inevitable) conflicts between these minds, and (c) run the resulting

constructed "society of mind" in the world provided on another "world server". All this without necessarily

having to consult with the server authors. This constructed society may now also be presented as just another

primitive mind server, ready for reuse by others as a component in a larger system.

From the current situation of isolated experiments we will move to a situation where not only can researchers

use each other’s agent worlds, but they can also use each other’s agent minds as components in larger systems.

Servers may call other servers, and it is expected that 3rd parties will continuously write wrappers and filters for

existing mind servers, overriding and modifying their default behaviour (to produce new, co-existing mind

servers). None of this necessarily means that the mind being used ever leaves its server (or that its insides are

even made public). Hence the term, the "World-Wide-Mind" (WWM), referring to the fact that the mind may be

physically distributed across the world, with parts of the mind at different remote servers.

Part of the motivation for the WWM is that if the AI project is to be successful, it may be too big for any single

laboratory to complete. So it will be necessary both to decentralise the work and to allow a massive and ongoing

experiment with different combinations of components (so that we are not locked into any particular layout of

decentralisation). Central to the WWM scheme is the expectation that researchers will not agree on how to

divide up the AI work, and so components will overlap and be duplicated.

Previous work by this author [Humphrys, 1997] introduced models of mind where competition took place

between extremely incompatible components, and where the mind could survive communications failure with or

even complete loss of a number of such components. The WWM idea grew out of this work, and this paper

shows how these previous models are the type of models we need in the WWM.

In the second part of this paper, we move towards an implementation of the WWM by trying to define the set of

queries and responses that the servers should implement. Clients (including other servers) may then implement

any general-purpose algorithm to drive the servers through repeated use of these queries. In our initial imple

mentation, we consider schemes of very low-bandwidth communication. For instance, schemes where the

competition among multiple minds is resolved across the network using numeric weights, rather than by explicit

reasoning and negotiation. It is possible that this low-bandwidth protocol may be more suitable to sub-symbolic

AI than to other branches of AI, and that other protocols may be needed for other branches of AI. It is suggested

that it may be premature in some areas of AI to attempt to formulate a "mind network protocol", but that in the

sub-symbolic domain it could at least be attempted now. Whether the protocol presented here is adopted or not,

the first part of this paper (the need for a protocol) stands on its own.

Finally, we suggest a lowest-common-denominator approach to actually implementing these queries, so that

current AI researchers have to learn almost nothing in order to put their servers online. As the

lowest-common-denominator approach we suggest the transmission across ordinary CGI of queries and

responses written in XML.

Keywords - World-Wide-Mind, WWM, Network Minds, Distributed Models of Mind, Society of Mind,

Distributed AI, autonomous agent architectures, Action Selection, Internet, client-server, HTTP, CGI, XML,

AIML.

Part 1 - Introduction

1 Introduction

For decades, AI researchers have constructed physical and simulated environments ("Worlds"), designed physi

cal and simulated robots and agents ("Bodies") to interact with them, and designed, learnt or evolved

behaviour-producing control systems ("Minds") to drive the Bodies. These Minds are typically used once, in a

set of experiments, and then discarded. They can (in theory) be reconstructed from the details provided in the

scientific papers, but in practice few ever see the light of day again. The papers, for good scientific reasons,

concentrate on extracting the general principles behind the Minds, rather than on ensuring that the Minds’ actual

existence continues.

In nature, by contrast, minds are produced by the million, and get to live in millions of bodies throughout the

world for millions of years. The contrast is dramatic with the testing and development of AI minds confined to a

single laboratory, and often only a single "body", for only a year or two (during 90 percent of which the body is

actually inactive). This paper suggests that the Internet provides a way for the field of AI to develop its own

rich, world-wide, always-on, ecosystem to parallel the natural one.

First we ask what the problems are with the existing situation.

1.1 AI is too big a problem

The starting point for our motivation is the argument that the AI project is too big and complex for any single

laboratory to do it all. Many authors have argued along these lines, and a number of different approaches to this

issue have evolved:

The traditional AI approach has been to work on subsections of the postulated mind, such as we find in

computer vision, or language processing. In practice this has often meant working on specialist problems

where it is assumed that if this system was built into a "whole mind", other modules would provide its input

and also be able to process its output. And if the whole mind is never built, it does not matter because the

system can stand on its own as a useful application, with humans providing the input and interpreting the

output.

The criticism of this approach is that the "whole mind" never actually gets built, and as a result many

issues, such as the large-scale architecture of a complex multi-goal creature, and how it resolves its many

internal conflicts, never get addressed. e.g. See the criticisms of [Brooks, 1986, Brooks, 1991]. For a

symbolic AI call to build whole systems see [Nilsson, 1995].

The Animats approach [Wilson, 1990] is to start with simple whole creatures and work up gradually to

more complex whole creatures. This approach has generated much good work about overall architectures

and conflict resolution. But as the complexity scales up, it cannot avoid the question of whether one lab can

really do it all. Perhaps the Cog project [Brooks, 1997, Brooks et al., 1998] is now beginning to hit those

limits.

The evolutionary approach is to say that control systems are too hard to design and must be evolved

[Harvey et al., 1992]. While it is true that this is how the most advanced control systems known arose,

success so far in following this path has been limited. Extraordinary things have been evolved [Sims, 1994]

but they are not, at least in the area of agent control systems, noticeably more advanced than the control

systems that can be designed by hand or through learning.

In any case, this paper shall not take a position on the merits of pure evolution v. design or learning. The

methods proposed will be such that could be driven by evolution if so desired. For the moment we simply

note that the evolutionary approach may also share with the animat approach an implicit assumption that

one lab can do it all.

It seems to me that all these approaches still avoid the basic question, which is: If the AI project is too big for

any single laboratory to do it all, then as we scale up, how will we link the work of multiple laboratories?

If the work in AI is to be distributed, with different laboratories engaging in specialisation, and then some

scheme to combine their work, many problems immediately arise. Who decides who works on which piece?

Will we spend all our time trying to define protocols to talk to other pieces? What if people can’t agree on how

to divide up the work, or indeed what the pieces are? [Brooks, 1991] Will this scheme force everyone to use a

common programming language? Will it enforce a common AI methodology and exclude others?

Whatever scheme we invent cannot enforce any of these things, nor can it define a particular way of dividing up

the work of AI. Rather it must be a framework for exploring different ways of dividing up the work, and differ

ent ways of combining heterogenous and overlapping modules from diverse sources. (By "overlapping", we

mean that the modules have not agreed on who does what. There are some inputs for which more than one

module will attempt to provide an answer.)

One thing we will need is a model of mind that can cope with multiple overlapping and conflicting minds in the

same body, and will assume the existence of multiple unused minds at all times.

1.2 Duplication of Effort

Up until now, the above problems with schemes for sharing work have tended to scare researchers off, and

instead everyone tends to invent their own system. In order to test a new learning algorithm, say, a researcher

will first design his own simulated world, or his own robotic testworld, or even design his own robot. This takes

a huge effort of time and work, and the problem world must be debugged and shown to be a hard problem, all

before you even get to test your novel algorithm. How many animats researchers have spent (perhaps wasted?)

their time designing their own gridworlds over the last number of years? Similarly, [Minsky, 1996] has criti

cised the recent "new AI" focus on using robots, saying researchers spend all their time learning robotics and get

to do very little AI.

There are other problems, such as that designing your own world means your algorithm is not tested in the same

world as previous algorithms. Machine Learning (ML) in particular has recognised this, and has attempted to

define testbeds in which multiple algorithms can be tested and compared. See the datasets at the UCI ML

Repository or MLnet [mlnet.org]. [Bryson et al., 2000] suggest the setting up of a website with similar standard

tests for autonomous agents and adaptive behaviour.

There have been some attempts to re-use test agent minds [Sloman and Logan, 1999, Sutton and Santamaria,

undated] and test worlds [Daniels, 1999], but they suffer from some of the same problems that have held back

re-use [Humphrys, 1991] in the mainstream computer world - complex installation, and incompatibility prob

lems with libraries, versions, languages and operating systems. Software is often easier to re-write than to re-use

[Spolsky, 2000].

This paper suggests that for AI re-use we look at perhaps the most successful recent model of re-use (often not

recognised as such) - the using of other people’s documents and programs off remote Web servers. The Web has

now made it commonplace for people to refer to data at a remote server rather than providing a copy of the data

themselves. It has also made it commonplace for people to refer to the results of a program run on a remote

server, rather than install the program themselves. We will suggest a similar model, where the agent test world

essentially stays at the remote server and is used from there, instead of being copied.

This paper will not just address the problem of re-using other people’s worlds, though. The fact that it is diffi

cult to re-use other people’s agent minds has also held back experimentation with complex, large-scale architec

tures.

1.3 Unused agents and worlds

Having invested the time and effort in inventing a robotic or agent testbed, few people then get to use it. Only

MIT students and researchers get to run algorithms on Cog. This is at most a couple of dozen people. By

nature’s standards, Cog does not get to "live" much [Humphrys, 1997a]. There is only one instantiation of it,

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://mlnet.org/

and - like all similar AI projects - it will in practice be inactive 90 percent of the time. The world’s AI labs are

full of robots that have not been activated for years, awaiting funding (and time) for the next researcher to set up

some brief experiment with them. Similarly, in the computers of the world’s AI researchers is a whole history of

unused virtual worlds and agent minds, stored in offline directories, awaiting a reactivation that may never

come.

Putting these agents and their worlds on the network could maximise their utilisation and testing, in the same

way that the original purpose of the Arpanet/Internet was to maximise the utilisation of rare and expensive

remote federally-funded mainframes. While their creators have moved on and are busy with new projects, the

agents and worlds will survive and will be linked to people who have the time and inclination to do further work

with them. Experiments will be done with them that their creators would never have thought of.

Clearly, it will be easier to provide remote access to a software-only world (you can give every client their own

copy) than to a robotic test world - the robot owners will want to control who (if anyone) uses their robots

remotely. This will be addressed in detail below. For software-only worlds it should not be hard to set up a

server to provide the existence of the world long after its creator has departed. For example, animat researchers

would be very interested in the existence of a server for a complex animal behaviour world, such as Tyrrell’s

world [Tyrrell, 1993].

1.4 Minds will be too complex to be fully understood

To complete the criticism of the current situation, there is definitely something in the evolutionary criticism

(referred to above) that advanced behavior control systems may be too complex to be understood.

As AI scales up, it is envisaged that minds will take on a level of complexity analogous to, say, a national

economy, where each component may be understood by someone, but the dynamics of the entire system is too

complex to be grasped by one individual. In the system we will propose, of a vast network of servers calling

other servers, each individual link in the network will make sense to the person who set it up, but there is no

need for the system as a whole to be grasped by any single individual.

Part 2 - The World-Wide-Mind

2 The World-Wide-Mind

The proposed scheme to address these issues is called the "World-Wide-Mind" (WWM). The name has a

number of meanings, as will be discussed. In this scheme, it is proposed that researchers construct their agent

minds and their agent worlds as servers on the Internet.

2.1 Types of servers

In the basic scheme, there are the following types of server:

1. A World and Body server together. This server can be queried for the current state of the world: x as

detected by the body, and can be sent actions: a for the body to perform in the world.

2. A Mind server, which is a behavior-producing system, capable of suggesting an action: a given a

particular input state: x. Note this does not mean it is stimulus-response. It may remember all previous

states. It may take actions independent of the current state, according to its own independent plans. The

Mind server may work by any AI methodology or algorithm and may contain within itself any degree of

complexity. It may itself call other Mind servers. In the latter case we call it a Mind M server to reflect the

fact that it communicates with another server or servers (which may themselves communicate with many

more servers) unknown to the client.

3. A special type of Mind server (in fact a special type of MindM server):

1. An Action Selection or AS server (or Mind AS server), which resolves competition among multiple

Mind servers. Each Mind server i suggests an action a i to execute. The AS server produces a

winning action ak . This may be one of the suggested actions ("winner-take-all") or it may be a new,

compromise action [PhD, §14.2].

The client talks to the AS server to get an action, and the AS server talks to its list of Minds, using

whatever queries it needs to resolve competition (perhaps repeated queries). Because it can produce an

action a given a particular input state x, the AS server is in fact a type of Mind server itself. This

is why we call it a "MindAS " server.

But it may be a very different thing from the other Mind servers. The other servers actually try to

solve some problem or pursue some goal. Whereas the MindAS server may be simply a generic

competition-resolution device, that can be applied to any collection of Minds without needing any

actual understanding of what the Minds are doing. We have 2 possibilities:

1. The list of Minds is hard-coded into the MindAS server.

2. The list of Minds is provided as an argument to the MindAS server at startup.

In either case, typically all the actual problem-solving intelligence (suggestions of actions to execute)

resides in the Minds.

It is imagined that each of these types of server may be customised with a number of parameters or arguments at

startup, so that a client may ask for slightly different versions of what is essentially the same server. We have

already seen possible arguments for a MindAS server (the list of Minds). Other possible server arguments will

be discussed later.

2.2 Types of Societies

By allowing Mind servers call each other we can incrementally build up more and more complex hierarchies,

networks or societies of mind. We will call any collection of more than one Mind server acting together a

Society. A Society is built up in stages. At each stage, there is a single Mind server that serves as the interface to

the whole Society:

1. A MindM server calls other Mind servers. To run this Society you talk to the MindM server.

2. A MindAS server adjudicates among multiple Mind servers. To run this Society you talk to the MindAS

server.

and so on, recursively. At each stage, there is a single Mind server which serves as the interface to the Society,

to which we send the state, and receive back an action. For example, in the simplest type of Society, the client

talks to a single Mind and World server, who talk to no one else:

1. client talks to:

1. Mind

2. World

In a more complex society, the Mind server that the client talks to is itself talking to other Mind servers:

1. client talks to:

1. MindM , which talks to:

1. Mind

2. Mind

2. World

or:

1. client talks to:

1. MindAS , which talks to:

1. Mind

2. Mind

3. Mind

2. World

and so on, with an endless number of combinations, e.g.:

1. client talks to:

1. MindM , which talks to:

1. Mind

2. MindM , which talks to:

1. Mind

3. MindAS , which talks to:

1. Mind

2. MindM , which talks to:

1. Mind

3. Mind

2. WorldW , which talks to:

1. World

(We will discuss "WorldW " servers later.)

Each Society has precisely one Mind server at the top level. This makes sense because the competition must get

resolved somewhere, so that an action is produced. And the client can’t resolve it. So it must be resolved by the

time it gets to the client.

2.3 Types of users

There are the following types of users of this system:

1. A non-technical Client user - essentially any user on the Internet. Basically, the client will run other

people’s minds in other people’s worlds. Without needing any technical ability, the client will be able to do

the following:

1. Pick one Mind server to run in one World. Even this apparently simple choice may be the product

of a lot of hard work - in picking 2 suitable servers that work together, and choosing suitable argu

ments or parameters for each server. So it is suggested that the client can present the results of this

work for others to use at some URL. In this case, no new server is created, but rather a "link" to 2

existing servers with particular arguments is set up. And at that link, the client may promote it, explain

why it works, etc. User-friendly software will make it as easy as possible for the non-technical to both

experiment with different combinations, and link to the result.

2. At a more advanced level, even a non-technical client may be able to construct a Society. For instance

a client may select a combination of remote Mind servers, a remote Action Selection server to resolve

the (inevitable) competition between these multiple minds, and finally select a remote Body/World

server to run this Society in. To be precise, what the client does is: Pick a Mind AS server, pass it a

list of Mind servers to adjudicate, and then simply pick a World to run the Mind AS server in.

The particular combination of Mind servers chosen may be the product of a lot of hard work (in

searching for good combinations). So again it is suggested that the client can present the results of this

work for others to use at some URL. Again, no new server is created, but rather a "link" to 2 existing

servers with particular arguments is set up. User-friendly software will make it as easy as possible for

the non-technical to both experiment with different combinations, and link to the result.

This is like constructing a new Mind server: When a client constructs a new combination of Mind

servers like this, it looks very much as if a new Mind server has been created, with totally new

behaviour. But in fact it has been done by supplying new parameters to an existing MindAS server.

Admittedly some of these parameters (the addresses of other Mind servers) may not have existed

when the MindAS server was written, and the choice of the combination may be an extremely creative

act.

In the above, the client does not necessarily need to know anything about how the servers work, or even

anything much about AI. The client just observes that certain combinations work very well, and others

don’t. The role that large numbers of clients acting over long periods may play in experimentation and arti

ficial selection may be very important, as will be discussed in detail later.

2. A technically-proficient server author - again any user on the Internet, if they have the technical ability

(and also access to a machine to host their new server). They will need to understand how to construct a

server, but their understanding of AI does not necessarily have to be profound.

As we have seen above, just specifying an existing server with new parameters can be very much like

creating a totally new Mind server with new behaviour. The server author, however, will be writing an

actually new server. For example:

1. A technically-proficient server author could write a wrapper around an existing, working Mind server,

i.e. Write a new Mind M server. The most simple form of wrapper would not provide any actions

itself, but would just selectively call other servers. For instance, the server author observes that one

Mind server tends to perform better in one area of the input space, and another server performs better

in a different area. The server author could then experiment with writing a wrapper of the form: "If

input is a particular x then do whatever the Mind server M1 does - otherwise do whatever the Mind

server M2 does." The author needs little to no understanding of how either server works, yet still

might be able to create a MindM server that is better than either Mind server itself. For a discussion of

such "Nested" systems see [PhD, §18].

2. An AI-proficient server author might try writing a MindM server that attempts to provide some

actions itself. For example, a server that only modifies the existing behaviour in some area of the

inputs, such as: "If input is a particular x then take this action a - otherwise do whatever the old

server does." The author may need little understanding of how the existing Mind server works. If

overriding it in one area of the input space doesn’t work (doesn’t perform better) he may try overrid

ing it in a different area.

3. At the most advanced level, AI researchers would write their own servers from scratch. But it is envis

aged that even AI researchers will find it useful (in fact, probably essential) to write limited wrappers

around other people’s servers whose insides they don’t fully understand (or want to understand).

That is the basic WWM idea. How this scheme will work, and what does it mean, will now be discussed in

detail.

2.4 Using other people’s agent worlds

First, we note that, among many other things, the scheme is trying to define a protocol whereby researchers can

use each other’s agent worlds. Not by installing the world at your own site, but by leaving the world running on

a server at its author’s site, and using it remotely. One issue we will have to solve is how does the client see

what is going on in the remote world where he is running his selected mind combination?

2.4.1 No user interface

Note the client may not wish to see what is happening - he may only want a report back at the end as to how

well his agent did - for example, if he is running an automated evolutionary search of different combinations.

For example, the client, instead of watching his robot picking up cans, may just want to know how many cans it

picked up over the course of a run. In fact, in this case the client may be able to calculate how many cans his

robot picked up by examining the state of the world after every action, and keeping his own running total as he

goes along. In which case no extra report back from the World server would be required. For an example of an

automated search with no user interface see [PhD, §4.1.1].

Perhaps the World server provides a URL where the client can see in real time what is going on, if he wants to.

If this URL is not connected to, no user interface is displayed.

2.5 Using other people’s agent minds

The very definition of this system may seem strange to the reader. We are taking for granted that simply being

able to match a single Mind server with a World server would be of limited use. Instead we are building a

system where clients can put multiple minds in the same body. The problem with these multiple minds is that

none of them are aware of the others’ existence, and each is designed to control the body on its own. Instead of

allowing them do that, we simply take their wishes into account when running the Action Selection server. For

an introduction to these kind of models see [Humphrys, 1997]. The Adaptive Behavior audience will be long

familiar with these kind of multiple-mind models. Other readers may find them very wasteful and unusual.

Yet, we argue, if 3rd parties are to construct societies of mind using others’ components, it will be impossible to

prevent massive overlap in function and conflict between these components. The realistic approach is to accept

overlap as inevitable and work on conflict-resolution methods (the AS servers). The AS server will try to allow

the expression at different times of most or all of the goals pursued by each mind. With some totally-conflicting

goals this may not be possible, so the human clients will finish the job, by looking for specific combinations of

minds whose conflicts, when resolved by the AS algorithm, results in a useful overall multi-goal creature.

The alternative to a multiple-conflicting-minds model would be to get the components to agree on their function

in advance, which is totally impractical.

This is not to say that a group of Mind servers cannot agree to divide up function in advance, and the agent

mind can consist of a single headquarters MindM server that knows about this division, and that calls each Mind

server, carefully switching control from Mind to Mind. This is possible, but may be very rare if Societies are to

be constructed by large numbers of researchers. The model cannot assume in general that minds make any

allowance for the existence of other minds. Users will construct combinations of new minds and old minds,

where the new minds did not even exist when the old minds were being written. For instance, even with a

perfect division of function like the collection we just described, no sooner will it be put online than users will

start constructing societies involving it and some new Minds. And then we are back to an Action Selection

problem again.

In fact, as has been discussed elsewhere - see [PhD, §18.3], and also the "brittleness" criticism of classic AI

[Holland, 1986] - wastefulness and multiple unexpressed ideas is generally a sign of intelligence rather than the

opposite. When it comes to intelligence, parsimony may be the enemy, rather than wastefulness.

3 Further issues on agent minds

3.1 Mind AS server queries the Mind servers (not Client)

One question then is how complex does the top-level client algorithm have to be? How many servers does it

have to talk to? For instance, when there is a collection of Mind servers and an AS server, the client could talk

to the Mind servers itself, gather the results and repeatedly present them to the AS server for resolution.

However, when we consider the vast number of possible algorithms for resolving competition, some involving

multiple queries of each Mind server with different suggestions, it seems more logical for the client to pass the

list of Mind servers to the AS server at startup, and then let the AS server query them itself, i.e. let the complex

ity of the competition-resolution algorithm be buried in the AS server rather than in the client. In our model, the

client manages a single Mind server and a single World server. Which leads to the next question:

3.2 Client talks to the World (not Mind server)

Perhaps the client should pass the World server address as an argument to the top-level Mind server, and let the

Mind talk to the World directly.

One reason we do not do this is that - unlike the situation with the AS server talking to the Mind servers - the

interaction between the Mind server and World server is not bounded - the run of this Mind in this World may

go on indefinitely. It seems better to have this logic in the client rather than in the server. The servers respond to

short queries, and the client is responsible for how many such queries there are, and what the overall control

algorithm is, e.g. implementing time-outs and repeated queries if servers do not respond. Or imagine a client

where a user is watching the user interface of an infinite run, and deciding, by clicking a button, when to issue

the "End run" command.

Another reason we may prefer to define the server queries, and then let a separate algorithm control how many

queries take place, is that we may like two Minds to communicate with each other in a conversation, in which

case each Mind serves as the World for the other. Instead of redefining the Mind server so it can respond to

questions such as "Get state", the client algorithm manages this, querying the Mind server for an action, and

then sending that action as the state for another Mind server. Imagine two chat programs connected together. Or

a "tit-for-tat" online competition [Axelrod and Hamilton, 1981, Axelrod, 1984].

3.3 Low-bandwidth communication

Crucial to the whole scheme of using minds from diverse sources is that we do not impose any restrictions on

the type of Mind servers that can be written. Minds can be written in any language and according to any

methodology. Minds do not have to explain themselves or how they work. Minds are hidden binaries on remote

servers. Minds cannot know about each other’s goals or insides. Or, to be precise, some minds may know how

other Mind servers work (and act accordingly), but we cannot in general demand this.

If Mind servers do not understand each other, then they can only communicate by low-bandwidth attempts. That

is, there is a limit to how much information they can usefully communicate to each other or to the AS server. If,

as has already been argued, it will be impossible to prevent large-scale conflicts between Minds, it is the AS

server that has to resolve the competition between these strangers who speak no common language. The central

question is: What information does the AS server need from the Mind servers to resolve the competition?

For example, if it just gets a simple list of their suggested actions: a i it seems it could do little more than just

pick the most popular one (if any appears twice). If none appears twice, it seems it could only pick a random

one. Perhaps the AS server rotates around the Minds, allowing each free reign for a time in rotation. Any such

time-based Action Selection scheme will be very crude [PhD, §15.1].

3.4 Numeric communication - Q-values and W-values

For any more sophisticated Action Selection than the above, it seems that the Mind server needs to provide

more information. We will first consider schemes where the servers pass simple numeric quantities around to

resolve the competition, yet still do not have to understand each other’s goals.

For example, Mind server i may tell the AS server what action a i it wants to take, plus a weight W i

expressing how important it is for them to win the competition on this timestep. This can be seen as a "payment"

in a common currency to try to win the Action Selection (see the "Economy of Mind" ideas of [Baum, 1996]).

Or perhaps the AS server, in a bid to resolve conflict, could suggest to all the Mind servers a compromise action

 ak and each Mind server could reply with another weight W i illustrating how much they would dislike

taking that action (assuming it is not the action they were originally suggesting). We may define the following

weights:

1. The "Q-value" defines how good this action is in pursuit of the Mind server’s goal, i.e. expected reward or

benefit from this action. Mind server i might build up a table Q i (x,a) showing the expected value for

each action in each state.

2. The "W-value" defines how bad it would be for this Mind server to lose the competition on this timestep,

and have another action taken. This rather depends on what action will be taken if it loses. Mind server i

may maintain a table W i (x) defining how bad it is to lose (or how much it will "pay" to win) in each

state. Or it may judge the badness of a specific action a by the quantity: Q i (x,a i) - Q i (x,a).

The usage of Q and W comes from [Humphrys, 1997]. High Q does not imply high W. Q could be high and yet

W = 0. For the differences between Q and W see [PhD, §5.5, §6.1, §16.2]. Given a set of Q-values, there are

many possible schemes for deriving W-values (discussed throughout [Humphrys, 1997]). The WWM server

queries defined in this paper will allow all of these numeric schemes to be implemented.

Higher-bandwidth communications than this would seem difficult if we are not to impose some structure on

what is inside each Mind server. Hence I will begin the WWM implementation with a sub-symbolic, numeric

Society of Mind, rather than a symbolic one.

3.5 The role of Mind M servers

Competition resolution, however, does not all have to be done by AS servers looking at Q-values and W-values.

Much of the work of combining multiple minds will also be done by hand-coded MindM servers, which state

explicitly who wins in which state:

"As long as the input state is in the region X do what Mind server no. 4006 wants to do,

otherwise, if the input state is in the region Y do what Mind 33000 wants to do,

otherwise (for all other states) give me a "strong" Mind 8000 (i.e. it has lots of currency to spend) and a

"weak" Mind 11005, and let them compete under AS server 300."

In this case the knowledge that Mind server no. 4006 should always "win" the competition when the input state

is in the region X is something that the server author has hard-coded. The Mind server did not have to

convince the other competing minds (or the AS server) of this fact. In general, a Mind server can implement any

general-purpose algorithm that interprets the incoming state, and can call another Mind server at any point in the

algorithm. For a discussion of such "Nested" systems see [PhD, §18]. One issue in nested servers will be the

possibility of a circular call, leading to an infinite loop. It is not proposed to build anything into the protocol to

prevent this. It is up to the server authors to prevent. [PhD, §18.1] discusses infinite loops in a society of mind.

To simplify, the above algorithm would be written as a MindM server whose "New run" command would be:

 send "New run" command to M1

 send "New run" command to M2

 send "New run" command to M3 with arguments (strong M4, weak M5)

where the server M3 is a MindAS server that can be passed its list of servers as arguments at startup. Then the

MindM server’s "Get action" command (with argument x) would be:

 if x in region X1 send "Get action" command to M1 with argument x

 else if x in region X2 send "Get action" command to M2 with argument x

 else send "Get action" command to M3 with argument x

M3’s "Get action" command sends a "Get action" command with argument x to both M4 and M5, and then

makes a decision based on what they return, perhaps querying them further before deciding.

3.6 What is the definition of state and action?

We have so far avoided the question of what is the exact data structure that is being passed back and forth as the

state or action. It seems that this definition will be different in different domains. This scheme proposes that we

allow different definitions to co-exist. Each server will explain the format of the state and action they generate

and expect (most of the time this will just involve linking to another server’s definition).

4 Further issues on agent worlds

4.1 Why not separate World and Body servers?

The above model simplified things by having a joint World-Body server. Why not separate further into World

servers and Body servers?

The fact is that a World server is a Body server. The world only "exists" in so far as it is perceived by the

senses. Imagine if we did split the model into World servers and Body servers. The World server would respond

to requests for the state of the world with an output x and would be sent inputs a for execution. The Body

server - would do the same thing. It would respond to requests for the state of the world as perceived by the

senses with an output x and would be sent inputs a for execution. From the point of view of the client, the

two servers are the same type of thing. It’s a matter of style which they advertise themselves as.

But there is still a problem with this model of joint Mind-Body servers. It seems to indicate that only the World

author can write Bodies - which goes against the philosophy of the WWM, where 3rd parties can write add-ons

without permission. The question is: How do we write new Bodies for the same World (if we are not the

World author)?

The answer is that it depends what we mean by writing "new Bodies" for the same World. There is a limit to

what we can do with someone else’s World without writing our own. The world may have a fixed number of

actors - say, one (e.g. a robotic world) - and what we are meant to do is provide the mind for the single actor.

We cannot will another actor into existence, so all we can do is give the single actor a different type of Body

than the Body that the World server has given it by default.

And even then, we cannot give it senses that the World has not already given it. All we can do is write Bodies

that sense a sub-space of the original state x provided by the World.

4.1.1 Changing the Body for the World

So when inventing new Bodies, we write them as new World-Body servers, which are wrappers around the old

World-Body server. We will call such a World server a World W server to reflect the fact that it communicates

with another server (which may itself communicate in a chain of World servers) unknown to the client.

The client only sees the senses as presented by the wrapper WorldW server, and sends its actions to the WorldW

server too. The WorldW server talks to the "real" World server. Presumably to it it seems like just another

client, requesting x and reporting a. And to the client, the WorldW server looks like just another World

server. The senses that the WorldW server presents to the client are strictly a subset of the raw senses presented

by the original World server.

Working with only a sub-space of the original state x may sound restrictive, but remember that in general, a

"World-Body" server just provides a stream of output x when queried about the state of the world. We have

not really defined what this output should be, and in fact people may write World servers whose outputs x are

deliberately designed not to be used as the raw senses of any agent, but rather are designed to be filtered by

many different species of 3rd-party Body, in wrapper WorldW servers. Note that even having a long chain of

WorldW servers does not break our basic model that the client deals with a single top-level Mind server and a

single top-level World server.

4.1.2 Multiple Bodies in the same World

Having accepted that a 3rd party cannot necessarily control the number of actors in a World, how would the

World server itself deal with multiple actors?

Robotic worlds: For example, say we have a robotic testbed with 2 robots equipped with different senses.

This would not require a World server and multiple Body servers. The senses returned by each are quite

different, so this demands different World servers. The logical implementation would be as 2 different

World-Body servers, both located at the original site. They will detect each other’s existence in the sense

that the other robot will appear in the state of the world x as detected through their senses.

Below we will discuss the special issues with robotics, where each World-Body server can only have one

client in control of it at a time. Here with the 2 robots, if a client wanted to do experiments in multi-agent

cooperation, they would need to gain exclusive control of both World-Body servers at the same time.

Virtual worlds (own copy): A virtual World server could create a separate instance of the virtual world

for each client, so that each client acted alone as a single actor in the world.

Virtual worlds (shared): On the other hand, the virtual World server might provide the ability to create a

new actor for every client that was using it, all such actors operating in the same world, and detecting each

other’s existence through state x.

But again this would not require a World server and multiple Body servers. It can be done with a single

World-Body server, with multiple clients connected to it at the same time, each sharing an instance of the

world with the other clients, rather than getting its own instance. The state x that the server returns is

customised for each client.

4.1.3 The joint World-Body model is no restriction

In conclusion, our joint World-Body model is no (or at least, little) restriction for a 3rd party:

1. New Bodies: We can change the Body for the World (within limits) by writing a wrapper WorldW server.

2. Heterogenous Bodies: We can write many different versions (within limits) of these WorldW wrapper

servers, thus creating many different possible Bodies for the same World.

3. Multiple Bodies in Same World: We can add many Bodies to the same instance of the World, if the

World permits it, by using multiple clients.

4. Multiple Heterogenous Bodies in Same World: And since our clients can connect each to different

wrapper WorldW servers, we can add many Bodies of different types (within limits) to the World.

4.2 What if the Mind cannot make sense of the World?

If we are to allow 3rd parties place Minds in any World-Body they like, and run the result, we must accept that

the Mind server may not be able to make sense of the chosen World. For instance the format of the incoming

state x may be different to the format the Mind server was expecting. In fact, far from being a special case,

this will probably be true of 99 percent of all combinations that a client could choose.

The basic scheme is that we allow this. The 3rd parties need to be given total freedom in their experiments in

artificial selection. Combinations that don’t work are not a problem. The 3rd parties will only of course adver

tise the combinations that work. World authors will explain the structure of the state x that they generate, and

Mind authors will document the structure of the x they expect, and further servers and clients will act accord

ingly.

4.3 Real robots

As mentioned, this model could even be used to control real physical robots or other real hardware. There are

already a number of robots that can be controlled over the Internet. For an introductory list see the [Yahoo list of

robots online]. "Internet tele-robotics" raises some special issues:

1. We may want a scheme where only one client can control the robot at a time. Whereas with a soft

ware-only world one can always allow multiple clients (e.g. by creating a new instance of the world and

body for each client). If the robot allows only one client at a time, we need WWM server commands to

start a run (block all other clients) and stop a run (mark free for another client).

2. The robot owner may want to restrict who is able to run a mind on his machine, since some control

programs may cause damage. Methods of security and payment may therefore need to be integrated.

3. A virtual world server requires little or no maintenance. The author can put the virtual world up on the

server and then forget about it. It runs forever, servicing clients, even perhaps after the author has left the

site.

A robotic world server, however, demands much more of a commitment. You need to maintain the hard

ware, recharge batteries, supervise use of it, repair damaged parts of the robot or things in the world, tidy

up objects in the world that have been scattered or put out of place, perhaps only allow client access when

someone is watching, and so on. It is a lot more of a commitment. You need to fund it and set aside a room

for it. As a result most of the Internet-controlled robots so far have run for a limited time only. Longer

projects will presumably be possible with payment.

These issues have already been encountered in the first experimental Internet robots. For a discussion of the

issues see [Taylor and Dalton, 1997]. For example, [Stein, 1998] allows remote control of the robot until the

client gives it up, or until a timeout has passed (for clients that never disconnect). [Paulos and Canny, 1996]

operate in a special type of problem space where each action represents the completion of an entire goal, and so

actions of different clients can be interleaved.

Ken Goldberg and colleagues have operated a number of Internet telerobotics projects. In the first "tele-excava

tion" project, clients queued for access to the robot. In the robotic tele-garden [Goldberg et al., 1996] users

could submit discrete requests at any time, which were executed later by the robot according to its own schedul

ing algorithm. [Simmons et al., 1997] do something similar. The robotic Ouija board [Goldberg et al., 2000] is a

special type of problem where the actions of multiple clients can be aggregated. We will define the WWM

server commands in this paper with a view to being able to implement all of these systems.

4.4 Time

The nature of time in this system is interesting. The agent senses a state of the world x and then talks to

perhaps a large number of servers in order to find an action a to execute. Some of these servers may be down.

Others may take a long time to respond. The question is: What happens to the world while the agent is

waiting to act? It seems there are 2 possibilities:

1. Synchronous World - The world waits for the agent’s next action before it makes the transition to the next

state.

2. Asynchronous World - The world changes state according to its own timetable, independent of the agent.

If the agent wants to behave adaptively, it must sample the state of the world often enough. In this case,

what the world server provides is a window onto an independently-existing, changing world.

We consider which of these would be used in each type of world:

Robotic worlds - Asynchronous: In a robotic world, if the mind servers do not respond quickly, then the

state of the world may have changed completely in the meantime. Perhaps we need some time-out system.

If the World server receives no answer within the time-out, then the old state of the world becomes

"invalid" and it sends a new state x.

On the other hand, we could say it is not the World server’s problem. We could say it’s up to the client to

implement time-outs (and re-check the state x) if it wants to behave adaptively. The advantage of this

would be to maintain a simple client-driven model. All servers - the World server, Mind servers and AS

servers - could ignore time. These servers would simply respond to requests emanating from clients. The

original client controls time and so can set up a system of time-outs.

In a multi-level system, there may be communication going on that the client does not know about. For

example, the "Mind" server that the client is waiting for may actually be a Mind AS server resolving

competition between multiple Mind servers. In this case, the MindAS server might implement its own

time-out. If it hasn’t got a reply from all of the Mind servers, it just makes a decision based on whatever

suggested actions have come in so far. Alternatively, the MindAS server may simply wait until it has had a

response from everyone, and if that takes too long then the client that is waiting for the MindAS server will

time-out.

It seems that a Mind M server cannot implement a time-out - it simply has to wait for the Mind server it is

calling to return.

Virtual worlds (own copy) - Synchronous: In a virtual world where the client has its own instance of the

world, then the World server can simply wait for the client to return an action before it moves on to the

next state of the world. Even if the server is down or not responding, that need not necessarily end the

"run". We could set it so that the run only ends by agreement, not by mere server failure, which merely

postpones the next step.

In a purely virtual world, the agent could live in a strange, "arrested-time" world. It interacts with the

world, the world server is down, it waits days for the next "timestep" to see the next state of the world.

Similarly, the world waits days to get the agent’s action so it can advance the clock to the next state.

Waiting is not a problem for either. A simulated world can run at any speed. Time speeds up and slows

down, depending on the servers.

Virtual worlds (shared) - probably Asynchronous: In a virtual world shared with other clients, the world

may either move on to the next state after a time-out, implementing whatever actions have come in so far,

or else wait for all clients to return before moving on. The problem with the latter is if a single client

crashes or goes offline, then all clients are frozen. So the shared virtual world will probably be Asyn

chronous, and it is up to the client to sample the state of the world often enough if it wants to be adaptive.

4.5 The name "The World-Wide-Mind"

The name "The World-Wide-Mind" makes a number of important points:

1. The mind stays at the server: The name highlights the fact that the mind is not copied but rather stays at

the server. We believe that the Web, by allowing documents remain at the remote server, and accessing

them remotely, provides an outstanding example of reuse of data that is applicable to reuse of software as

well. Under the "Web-like" model of software reuse, instead of the complexity of installing your own copy,

upgrading version 4.0 run-time libraries to version 5.0 libraries, and so on, you link to a remote service. In

a Society of Mind constructed according to this principle, the mind will be literally decentralised across the

world, with parts of the mind at different remote servers. Hence the name.

2. Parts of the mind are separate from each other: The name also highlights that the important thing is not

the separation of mind from world, but the separation of different parts of the mind from each other, so

that, for example, they can be written and maintained by different authors.

3. This is separate from the Web: The name also indicates that this is a different thing to the

World-Wide-Web. During the recent rise of the Internet, many people have talked about seeing some sort of

"global intelligence" emerge. For a survey see [Brooks, 2000]. But these writers are in fact talking about

the intelligence being embodied in the humans using the network, plus the pages they create [Numao,

2000], or at most perhaps the intelligence being embodied implicitly in the hyperlinks from page to page

[Heylighen, 1997, Goertzel, 1996]. Claims that the network itself might be intelligent are at best vague and

unconvincing analogies between the network and the brain [Russell, 2000]. Indeed the whole idea of

"global intelligence" has had a bad press (rightly, I believe) since the days of Teilhard de Chardin. It is

simply incorrect that a large number of individuals in communication will simply "emerge" as a mind. Not

every society is a mind. Minds are highly structured things, and need to be deliberately constructed, as this

paper will attempt to do.

For a real society of mind or network mind, we need a network of AI programs rather than a network of

pages and links. We may actually be able to implement this on the existing network of Web servers,

running over HTTP, but it must be designed as such. It will not simply "emerge" from schemes for linking

data on the Web.

4. This may not even interact with the Web: By separating this from the Web, the name also separates this

from existing work that might go under the name of "AI on the Web", namely, AI systems learning from

the Web. There are many such systems, the most impressive perhaps being the citation indices CiteSeer

[Lawrence et al., 1999] and Cora [McCallum et al., 2000]. The "global intelligence" researchers who have

concrete models as opposed to just metaphors [Heylighen, 1997, Goertzel, 1996] have also started by

looking at the existing Web.

But a WWM system is not necessarily interested in learning from or interacting with the current Web or its

users. We are embedding the WWM in the network not so much because of the prior existence of the Web

(though we may make use of that), but mainly because of the future potential of other WWM servers.

5 How the WWM will be used in AI

We envisage of course that progress in AI will continue to be driven mainly by professional researchers in AI

laboratories. But if these researchers write their AI minds and worlds as servers, the AI project could be

massively decentralised across different AI labs. As well as allowing AI labs to share work, and specialise, there

would also be a world-wide experiment always on, with constant re-combination and testing (in public) of

everything that has been put online so far.

5.1 Dividing up the work in AI

First of all, AI researchers can more easily specialise. Minds are separate from Worlds, so that researchers can

reuse each other’s Worlds. Anyone doing, say, AI experiments in learning, can, by writing to this protocol, use

as a test bed someone else’s World server, and does not have to write his own. He can concentrate purely on

devising new learning algorithms. Re-using other people’s Worlds [Bryson et al., 2000] will probably be the

most common use initially. Learning how to reuse other people’s Minds may take time.

5.2 Making AI Science - 3rd party experimentation

As discussed above, having to invent your own test environment to test your new algorithm is not only a lot of

extra work - it also makes it harder to objectively evaluate the new algorithm. Even if you take care to do a run

of the old algorithms in your new test world, the test world might (however unintentionally) be designed to

illustrate the good points of the new algorithm. Clearly, being able to compare different algorithms on the same

pre-built World server goes a long way towards helping AI run objective comparisons of algorithms and models

of mind.

But the WWM goes much further than that. By its emphasis on 3rd party experimentation, algorithms will be

subjected to constant examination by populations of testers with no vested interest in any outcome. 3rd parties

will ensure that the results can be repeated again and again. They will compare many more different combina

tions of servers under control conditions. (Currently we are still assuming that 3rd parties will be other AI

researchers. Whether the general public will carry out useful tests will be discussed shortly.)

The whole question of how to prove one autonomous agent architecture is better than another has become an

important issue recently. [Bryson, 2000] points out that, essentially, no one uses each other’s architectures:

"There have been complaints .. about the over-generation of architectures" and (among behavior-based

models): "no single architecture is used by even 10 percent of .. researchers." Most architectures have perfor

mance statistics to support them, but these statistics have had little success in convincing rival researchers to

abandon their own favourite models. In particular, if the tester invented the test world to show off his new algo

rithm, there are simply too many uncontrolled variables for the test results to be totally conclusive. Test results

can only become conclusive when there is repeated objective 3rd party evaluation. Currently 3rd parties have to

go to great effort to recreate the test situation, and this rarely happens. For instance, Maes’ model [Maes, 1989,

Maes, 1989a] waited years for Tyrrell to re-implement it in a performance comparison [Tyrrell, 1993]. Tyrrell

does not get impressive performance for it, but reading his thesis one might argue there are still uncontrolled

variables in Tyrrell’s implementation. Re-implementing Tyrrell itself is a difficult job [Bryson, 2000a] which

rather adds to the lack of conclusion about his results.

In any branch of AI, the existence of objective tests that cannot be argued with tends to provide a major impetus

to research. This has been one of the main reasons for the popularity of rule-based games in AI [Pell, 1993].

Robotic soccer has also taken off in recent years for this reason. Noda’s soccer server [Noda et al., 1998] is

probably the closest in spirit to the WWM, though the user must still download and install the agent world.

On the WWM, mind and world must be presented publicly, and 3rd parties will drive objective evolution of the

best solutions. They will test servers in environments their authors never thought of, and combine them with

other servers that their authors did not write. The experiments will be outside of the server authors’ control.

They will do this in public and, if properly written up, this will implement an ongoing objective programme of

artificial selection (i.e. selection by hand) and "natural selection" (machine-automated selection) of agent

solutions.

5.3 Artificial Selection

I imagine that many will see the ability of any 3rd party on the Internet to choose and run their own combination

of servers as a "cute" but unessential feature. That it is some essentially patronising scheme of allowing the

public think they are helping with science.

But this misses a couple of points. First, that the only way of allowing any professional AI researcher to experi

ment with servers without permission is to allow every user on the Internet to experiment with the servers.

Secondly, in fact, I believe it will be essential to the success of the idea that more than just AI researchers can

work this system. AI researchers are focused on specific projects, with deadlines and many responsibilities.

There are not many of them, and they don’t have much time. With 3rd parties, there are millions of them, and

they have a vast amount of free time. Many schemes have harnessed the power of the millions of idle and

curious Net users, e.g. "metacomputing" projects such as large-scale cryptography cracks or SETI data analysis.

Within AI, there have been some evolutionary experiments attempting to recruit large numbers of users. See the

[Yahoo list of ALife programs online]. Perhaps the most impressive is the "Talking Heads" language evolution

project [Steels and Kaplan, 1999] in which 4000 agents have been constructed and tested by online users

[Steels, 2000]. Such ideas are in fact fundamental to the Internet. Even the idea of linking itself in the Web is a

classic example of harnessing the power of large numbers of people. Other people do some of the work for you,

by tracking down sites and presenting you with a pre-built list of links.

Here with the WWM, the idea of a client presenting at a URL a pre-built combination of servers is deliberately

modelled on the Web idea of a pre-built selection of links. Working the system will not be as easy as making a

link on the Web. It will require some ability and interest - though perhaps no more so than the interest ordinary

people have in raising animals and infants. People will write user-friendly software to make it easy to be a

non-technical client, experimenting with combinations of pre-existing servers, taking part in ongoing competi

tions to beat the highest score in a particular World. Obviously the amateurs will report their successes in what

will probably be a somewhat haphazard fashion. It will be up to the AI professionals to make sense of what they

see, and investigate promising leads and write them up in a scientific manner.

http://uk.dir.yahoo.com/Science/Computer_Science/Distributed_Computing/
http://uk.dir.yahoo.com/Computers_and_Internet/Security_and_Encryption/Challenges/
http://uk.dir.yahoo.com/Science/Astronomy/Radio_Astronomy/SETI__Search_for_Extraterrestrial_Intelligence_/SETI_home/

But the power of artificial selection by large numbers of amateurs should not be underestimated by science.

Putting unseen-before minds into unseen-before worlds, years after the research groups that made both minds

and worlds have vanished, may be of real benefit to science. 3rd parties will run old minds in new worlds, and

new minds in old worlds. They will drop new minds into old collections, and run combinations that make no

sense. It is certain that they will run combinations of servers that the scientists never thought of.

The professionals may be sceptical of the value of this, but millions of people experimenting with different

mind/body/world combinations year after year on the network would represent a richer experimental milieu than

anything AI has ever yet built. Thousands of years of artificial selection by farmers and breeders across the

world (non-scientists) is now recognised as one of the most thorough scientific experiments in history. Since

modern science arose, hardly any new animals or plants have been successfully domesticated, which indicates

that pre-scientists really did do all the major experiments [Diamond, 1997]. And of course the scope of what

artificial selection has been able to produce, from fruit and vegetables to dogs or racehorses, is breathtaking, and

was one of the central inspirations for Darwin’s theory [Darwin, 1859, §1, "Variation under Domestication"].

With AI, large-scale artificial selection projects cannot begin unless the AI work comes online.

5.4 How 3rd party AI researchers will use the scheme

To continue our theme in defence of 3rd parties, it is often forgotten that many AI researchers are excluded

from the AI project as well. The WWM scheme will allow AI researchers in poorly-funded labs, in distant and

poor countries, isolated postgraduate students, and so on, to participate in the great AI adventure. Not for chari

table reasons, but because their exclusion is a loss to the science.

They will make a more sophisticated use of it than the amateurs. They will write new servers themselves, either

from scratch, or by partial reuse of existing servers, by writing MindAS servers, MindM servers and WorldW

servers. They will re-use others’ work in controlled experiments. They could take an existing world, body,

problem, and basic collection of minds, and just work on simply adding one more mind to the seething collec

tion. Things like:

1. 1st party makes World.

2. 2nd party makes Mind for World.

3. 3rd party makes MindM which in state x does something, otherwise does what 2nd party Mind does.

4. 4th party makes different Mind for World.

5. 5th party makes MindM which in state y does what 4th party Mind does otherwise does what 3rd party

MindM does.

And so on, with people modifying and cautiously overriding what already works. Of course they are not actu

ally modifying what already exists in the sense of changing it for other users and removing the old version.

Making a wrapper server simply means that 2 servers now exist instead of one. The wrapper author cannot force

anyone to use the new wrapper in preference to the old server.

By setting up a system whereby many authors, acting over different times, will contribute to constructing a

Society, the WWM provides AI researchers with the ability to do a lot more than just reuse other people’s test

worlds. In every field, the Internet has already allowed marginalised, distant and poorly-funded researchers

participate in international research like never before, from access to primary literature that may not exist in any

library in the client’s country, to access to remote databases and software libraries. The WWM is simply contin

uing this trend.

5.5 Bring every agent online

Part of this proposal is a plea for recognition of the untapped potential in AI - the vast number of minds and

worlds that are offline. Some of this comes from my own experience with putting an agent mind online. For I

was one of the first people to put an AI mind on the network, an "Eliza"-type chat program in 1989 [Humphrys,

1989].

http://www.literature.org/authors/darwin-charles/the-origin-of-species/chapter-01.html

The original "Eliza" was introduced in [Weizenbaum, 1966]. Now I must say upfront that Eliza-type programs

have little to do with serious AI - their understanding of conversation is an illusion. But this does not affect the

argument. They are behaviour-producing systems, like our postulated Mind servers. My point is that many

people conversed with the original Eliza (not online of course, for there was no network), but it did not stay

accessible. Soon, the experiment was over, written up, and the original version of Eliza remained largely inac

tive until the modern era. In 1989 I put my own Eliza-type program, "MGonz", online on BITNET. Many

people talked to it, but soon (in fact, by 1990), MGonz had ceased to interact with the world.

A brief, finite interaction with the world, seen by only a few people, and normally not even online, is the norm

in autonomous agents research. In this field it has become acceptable not to have direct access to many of the

major systems under discussion. How many action selection researchers have ever seen Tyrrell’s world running,

for example? [Tyrrell, 1993] How many robotics researchers have ever seen Cog move (not in a movie)?

[Brooks et al., 1998] Due to incompatibilities of software and expense of hardware, we accept that we will never

see many of these things ourselves, but only read papers on them, and sometimes watch movies. This situation

seems normal, but if we ever get used to direct access to remote agent minds and worlds, it may come to seem

like bad science not to allow it, and to only report offline experiments that were seen only by the creator of the

agent.

But it is not just watching the agents that this is aimed at, it is interacting with them. The problem with inactive

agents is that the only experiments run with them were the ones their creator thought of doing. But as we have

argued, AI researchers are often too limited in time and resources to explore fully the possibilities of their

creations. It is as if animal species only got to live through one individual and one lifespan. As AI develops, we

should begin to regard the inactivity of our growing list of old creations as a loss, like the silence of extinct

species. The WWM aims to put an end to this inactivity.

The invention of CGI and other technologies has recently resurrected some of the old agent minds of AI, includ

ing the Eliza-type programs [see Yahoo list of AI programs online]. The WWM will vastly accelerate this

process, by bringing many of the recent autonomous agents minds online in re-usable forms where they can be

driven by remote programs. We aim to take all of the Minds and Worlds that human ingenuity can create,

and get them all online and interacting with the world indefinitely. To get AI to move away from isolated

experiments, and instead develop its own rich, world-wide, always-on, ecosystem to parallel the natural one.

6 Objections to the model

It is important to ask, if this scheme is going to be so useful, why AI has not taken this direction in the past. The

following may be reasons why (or possible objections):

1. Co-operating is too much trouble. - In the past researchers have not seen the benefits of dividing up the

work. As discussed above, many researchers still have the impossible dream of doing everything them

selves, such as the CYC project [cyc.com]. Two similar projects, GAC [mindpixel.com] and Open Mind

Commonsense [commonsense.media.mit.edu] are online, but are attempting to use the Net to get people to

teach the centralised agent mind, rather than having the agent mind distributed on the Net.

Indeed many presentations in the Animats or evolutionary fields still seem to assume that one lab can do it

all. Some of them recognise the immensity of the problem as we scale up, but when faced with the

complexity of dividing up the work, defining communication protocols, and coordinating the results, most

have retreated back into either designing whole agents (but saying this is alright for simple agents) or else

producing specialist components which may or may not ever be used as part of a larger system.

2. How do we divide up the work? - Part of the problem, I believe, is in the mental model of reuse that is

being used. It is imagined perhaps that the components being reused need to be understood. That their

source code needs to be merged with other source codes. That all binaries need to be installed at one loca

tion. That components will engage in high-level reasoning and negotiation with each other (rather than

simply be mutually-incomprehending minds). And finally, that components will not overlap - that each will

have its own well-defined function.

http://cyc.com/
http://mindpixel.com/
http://commonsense.media.mit.edu/

These are all reasons why re-use is difficult in the software world in general. But in the model of reuse

proposed here, none of these things are necessary. It is not necessary to have a clear definition of how the

work should be divided up. It is not necessary for components to understand each other. It is not necessary

to install anything. Components being re-used can remain at the remote server, are used as a service from

there, and are not fully under the client’s control. Which leads to the next reason:

3. Researchers do not want to be dependent on other people’s work. - What if the remote server is down?

Or the author has made changes to it without telling us? Or removed it permanently?

Part of the problem, I believe, is models of mind in which the loss of a single server would be a serious

issue. Instead of models of mind where hundreds of similar servers compete to do the same job, researchers

have been assuming the use of parsimonious minds where each component does a particular task that is not

done by others. Certainly, in the early stages of the WWM, with few servers online, clients may feel that

their constructed minds are very fragile and dependent on the servers. But some clients will continue to add

more and more "unnecessary" duplicated minds to their societies. In a model of mind with enough duplica

tion, the temporary network failure (or even permanent deletion) of what were once seen as key servers

may never even be noticed.

4. But some servers will be indispensable. - Yes, this is true. While duplicate models of mind can take us a

long way, some servers will be indispensable. We could have a MindAS server that collects suggested

actions from many Minds, and if some of them are gone it will run with whatever suggestions are left. But

the MindAS server itself is essential, as is the World server. Like pages that we link to disappearing from

the Web [Humphrys, 1999], how can we cope with the disappearance of a server that we need?

The basic answer is that if it is important to us, we will copy it (if it is free) or buy it or rent it. Then we

either set up our own server, or continue to use the remote server and just keep our copy offline as backup.

Here’s how in practice one might be running a large, complex Society of Mind with actually very little

risk: Imagine that our top-level AS server is a well-known, standard type that we can get our own copy of.

(Not that we actually use it. We continue to use a remote server. But we have our own copy just in case.)

Say the World server is a popular test world that is implemented at multiple sites (we just use our favourite

one). And we use hundreds of remote minds in a complex society. For all of these we will take the risk of

some of them vanishing, and see little reason to buy or copy any of them ourselves. After all, other new

and interesting Mind servers are coming online all the time.

5. Models of Broken links and Brain Damage - Broken hyperlinks are a problem with the Web model of

remote data, and the equivalent of broken links will happen with any scheme that uses remote servers.

As discussed above, one way of making a Society more robust would be to add "unnecessary" duplication.

For this to work smoothly, we need an Action Selection scheme where a Society with n identical Mind

servers trying to do the same thing, plus other servers, will behave more or less the same as a Society with

1 Mind server trying to do that thing, plus other servers. Then we can add extra copies of the Mind server

located at different sites, and won’t even notice if some of those sites are down. This property is not true of

all AS schemes, though. [Humphrys, 1997] shows that it is true of individual-driven AS schemes such as

Minimize the Worst Unhappiness, but is not true of the more common collective AS schemes.

So using a model like the above, Societies will degrade gradually as the number of broken links increases.

In the above work I explicitly addressed the issue of brain damage in a large society of mind [PhD, §17.2.2,

§18]. The reader might have wondered what is the point of a model of AI that can survive brain damage.

After all, if the AI is damaged, you just fix it or reinstall it surely? Here is the point - a model of AI that can

survive broken links. This leads to the more general reason why this whole approach to remote re-use has

not been used:

6. Models of duplicated mind are poorly developed. - We have argued throughout that if the work is to be

divided up in AI it will be impossible to avoid massive overlap and duplication of function, and resulting

conflict. We need models of mind in which a state of conflict is totally expected. Unable to get server

authors to agree, we will instead selectively override, censor, and subsume old servers instead of re-writing

them (or vainly trying to get the server author to re-write them). Such duplicated models have been argued

for [Brooks, 1986, Brooks, 1991, Minsky, 1986] but parsimony is still popular. We will also need Action

Selection that can resolve competition between minds that barely understand each other [Humphrys, 1997].

In a traditional system where a single designer writes the whole system, he can make deliberate

global-level decisions in the interests of the whole creature, and there is no need for the decision to emerge

from local rules. But with mind servers from diverse sources, the need for Action Selection based on local

rules re-emerges.

It is clear enough to see how sub-symbolic conflict resolution can occur via numeric weights. But if Minds

are strangers written by different authors, in what symbolic language could they communicate? Which

leads to the following objection:

7. It is premature at symbolic level to attempt to define mind network protocols. - This is probably true.

Since even before the Web, researchers have debated the possibility of standardised symbolic-AI knowl

edge-sharing protocols, with [Ginsberg, 1991] arguing that it is premature to define such protocols.

Recently this debate has continued in the Agents community as the debate over defining standardised agent

communication languages. See a recent survey of many approaches in [Martin et al., 2000], who then

define their own approach. Agreement is weak, and it may be that the whole endeavour is still premature.

For example, some of Minsky’s students [Porter et al.] attempt to implement a Society of Mind on the

Internet, but insist on a symbolic model, with which they make limited progress. Indeed, Minsky’s work

may have had little impact in the sub-symbolic world because of his hostility to that world [Pollack, 1989].

We argue, though, that it is not totally premature to start defining mind network protocols at the

sub-symbolic level. There are already many schemes of numeric weights, and Action Selection based on

weights, in the literature. The sub-symbolic WWM in this paper has been designed so that all current

numeric agent architectures (that the author is aware of) can be implemented under the scheme.

There will no doubt be further sub-symbolic (and later, symbolic) protocols. But designing the early ones

for simple numeric weights will give us an idea of how to do it in the future for more heterogenous agents

with different representations [Minsky, 1986, Minsky, 1991]. This will be the first in a long family of

protocols.

8. "Agents" researchers (or other branches of AI) have already done this. - No they haven’t. Consider

how the field of Distributed AI has developed. For surveys see [Stone and Veloso, 2000, Nwana, 1996].

DAI has split into two camps:

1. Distributed Problem Solving (DPS) - where the Minds are cooperating to solve the same problem in

one Body.

2. Multi-Agent Systems (MAS) - where the Minds are in different Bodies. We have 1 mind - 1 body

actors, and then coordination of multiple actors. This is what the field of "Agents" has come to mean.

Indeed, [Nwana, 1996, §4.3] makes explicitly clear that our servers are not Agents.

This is neither of these two, but rather is multiple minds solving multiple problems in one body. If

anything, it is closer to the field of Adaptive Behavior and its interest in whole, multi-goal creatures

whose goals may simply conflict. Agents researchers also tend to work at the symbolic level only, rather

than the sub-symbolic as we do here (and as many people do in Adaptive Behavior).

Artificial Life and evolutionary researchers are certainly interested in collective, and even collective

network-based models [Ray, 1995], but again the minds are localised, as in the MAS approach. In [Ray,

1995] it is a society of agents that is distributed across the network, not a single agent mind.

Machine Learning (e.g. Reinforcement Learning) researchers have tended to focus on solving a dedicated

problem, rather than juggling many partially-solved conflicting problems. That it, they tend to take the

DPS approach.

9. Virtual-world researchers have already done this. - No they haven’t. They have tried to establish stan

dard technology for displaying worlds, such as VRML. Here we establish a framework within which state

and action data may be sent back and forth, but the format of the state is left to be defined by each server.

These researchers also concentrate on user-driven avatars, with a graphical UI. This considers AI-driven

actors, with possibly no UI at all.

10. Tele-robotic researchers have already done this. - No they haven’t. They have concentrated on

user-driven control from web pages, rather than remote machine-driven control.

11. The network is not up to this yet. - Possibly true. Simple WWM societies can certainly run on today’s

network. It may be that a Society with a large number of servers in multiple layers will operate very slowly

on today’s network. But that will change.

12. There is a chicken-and-egg problem. - It is true that until other people put up their worlds, minds and AS

mechanisms as servers, there is not much attraction in converting to using servers oneself. One thing that

may speed the adoption of this scheme, though, is currently there is no easy alternative method in many

areas. For example, how would one make Tyrrell’s agent world [Tyrrell, 1993] easily available to

researchers? Going the server route seems almost as easy as any other.

7 Miscellaneous issues

7.1 Hidden server insides

The internal server workings do not have to be made public. The only demands are that the server replies to

external requests according to the protocol. The Mind server can be a symbolic mind, a neural network, a genet

ically evolved program, or anything else. It does not have to tell us. This will be important for commercial

servers who want to protect their investment, or sell access to their server. It may also be important for academic

projects. Although it could be argued that all academic projects should publish their source code (and there is no

excuse not to, now that the Web exists) so that experiments can be replicated.

An interesting side effect of hidden server internals may be a more level playing field between different types of

AI. Currently people tend to look for algorithms only within a particular sub-field - neural net researchers look

for other types of neural net, symbolic AI researchers look for symbolic routines, and so on. Here, each algo

rithm will stand on its merits, and it may be better science if we do not know, at least initially, what is inside the

server. The doctrinaire neural net researcher may be embarrassed to discover that the excellent server he has

been using for years is in fact a symbolic AI server. Such objective symbolic v. non-symbolic competition has

in fact already occurred in robot soccer [Stone and Veloso, 2000].

It will be interesting to see how this develops. Some researchers may refuse to use servers unless they know

how they work. They will argue that it is bad science, since any systems built using such servers can only be

replicated as long as the server owner continues to provide the secret and unknown service. Others may argue

the above case - that it is a breath of fresh air (and good science) to be able to judge algorithms entirely on

performance without, at least initially, knowing anything else about them. The answer really is that it will be

good science if, while server authors do explain in some detail what is inside, such information is routinely

ignored as different combinations of systems are constructed and tested on merit.

7.2 Credit

Allowing servers to be used as components in larger systems is central to the WWM idea. One issue though is:

Can you track how your server is being used? Imagine that your server is being called by a popular MindM

server. To the outside world, does the MindM server get all the credit? Can a 3rd party look at a successful

Society, and see all of the servers involved in it at all levels? Or do they just have to assign all the credit to the

top-level server, not knowing what is behind it? We suggest the following:

1. Every server has a URL.

2. At that URL they link to the URLs of every server they are calling.

3. When they call another server, they provide it with their URL as part of the query.

4. So each server, at its URL, can link to all servers it calls and all servers that call it.

5. 3rd parties may read these lists, and follow chains of credit through the Society, even if the server authors

are not involved.

The latter point is important. On the WWM we expect that thousands of server authors will leave their servers to

be run in the research community long after they have gone. Hence we want these lists to be published online,

rather than simply known internally by the programs or recorded in logfiles.

An interesting question is whether you could write a malicious wrapper server, where the MindM server does

not acknowledge that it is calling another Mind server, and tries to take the sole credit for the functionality.

There are many possible answers to this (e.g. servers publish their usage logs online), but we doubt it will be an

important issue. More likely the AI community will simply ignore servers unless they come (i) from serious and

respectable sources and (ii) explain in exhaustive detail how they work and what other servers they are calling.

7.3 Learning servers

If Mind servers learn from interacting with a World, while part of a Society, where is that new knowledge

stored? One might say it should be stored at the Mind server, and that seems reasonable in many cases (if the

clients can tolerate the fact that the server may change). There are, however, a couple of problems:

1. First, the server may learn erroneous things. For instance, a client uses a Mind server, and gets a suggested

action a. The client reports the new state y and the Mind server learns that action a led to state y.

But the client forgot to tell the Mind server that its action was not actually obeyed (it lost the competition),

so it was some other action that lead to state y. The client may even be malicious. AI programs that learn

from user input online have found that many users input nonsense or misleading information [Hutchens,

undated]. The integrity of the Mind server cannot be compromised by a buggy or malicious client. So we

suggest that the Mind server learns relative to a particular client only. i.e. It stores a file of knowledge

that is only used with that client. What you teach it may only change how it interacts with you, not how it

interacts with others.

2. Some of the learning may only make sense relative to a particular Society (e.g. the W-values), and so again

we suggest it learns relative to this client only.

This does not mean that other clients cannot access the new knowledge. It just means they have to do so explic

itly: "Give me the Mind that you learnt with client c".

7.3.1 Learning Temperature

A Mind server that learns also raises the question of which of these we want:

1. A pre-built server that has already learnt what it wants to do [pure exploitation].

2. A new version to start learning from scratch, i.e. whose initial actions may be completely random [pure

exploration].

3. A server that has already learnt some preferences, but still engages in some new exploration [some

exploitation, some exploration].

We may pick one of these at the start of the run, or even half-way through the run we may decide to get the

server to go back and re-learn. We can control all this by passing a "Temperature" parameter to the server.

Temperature = 0 means we want the server to exploit its current knowledge with no exploration. High Tempera

ture means we want the server to do a lot of exploration. As Temperature -> infinity the server tends

to engage in maximum exploration. The use of the word "Temperature" is explained in [PhD, §2.2.3]. Exactly

what counts as a "high" Temperature for this server will be explained by the server at its URL. Rather than just

provide the Temperature at the start, we might provide it on a step-by-step basis, so that at any point the client

may send Temperature = 0, which means "Send me your best action, based on your learning so far". Generally,

the temperature will decline over the course of the learning run. We have two basic strategies:

1. Server maintains temperature - The temperature is initialised, either explicitly by the client, or the server

is left to pick a reasonable high temperature. The server maintains an internal value for temperature, and

decreases it every step so that by the end of the learning run it will have reached the minimum temperature

(it stops learning). The client will need to tell the server how long the run will be. The client makes

requests of the form Get action (x)

2. Client maintains temperature - The client maintains the temperature value, and passes it to the server

with every request. The client makes requests of the form Get action (x,temperature)

7.3.2 Q-Temperature and W-Temperature

If the world changes, we may ask the Mind server to re-learn its Q-values from scratch, i.e. increase the

Q-Temperature. If the collection of minds changes (i.e. the competition changes), we may ask the Mind server

to re-learn its W-values from scratch, i.e. increase the W-Temperature.

Part 3 - Implementation

8 Implementation

Having defined in the first part of this paper how a WWM scheme could work, and what it would be good for,

we shall now move towards an actual implementation. First we need to define what the standard mode of opera

tion will be. Will clients connect to servers for long periods of time? Or will they connect, carry out some trans

action, and then disconnect? First note the differences with the Web:

The Web is a short, non-looping process - Start request - Send URL - Get all files - End request.

CGI is similar - Start request - Send arguments - Get all data returned by program - End request.

The WWM, however, is a looping, indefinite-length process - Start run - Run indefinitely (Get state, get

action, execute action, get state).

An explicit "End run" command might be inserted, perhaps by the client, or by a server when it has

detected some condition. Or the loop could run for a pre-determined amount of time.

8.1 Short, limited-length, client-server transactions

One way of breaking this indefinite loop down might be to treat each individual interaction with a server as a

short, non-looping process. The server responds to a short query with a response that will return within a limited

time. The server does not know when, if ever, it will receive the next query. Other algorithms implement loops

and more complex logic repeatedly using these primitive server queries.

8.2 Client algorithm

The client software, which is driving a single top-level Mind and World, will implement a program something

along these lines:

1. For each server:

Connect to server - Start request - Tell server to start a new run for this client - Receive a unique run

ID, so that you can identify yourself later - End request

2. Repeat:

1. Connect to World server - Start request - Send run ID to identify yourself - Query state - Get state x

- End request

2. Connect to Mind server - Start request - Send run ID to identify yourself - Send state x - Get action

 a - End request

3. Connect to World server - Start request - Send run ID to identify yourself - Send action a - Get new

state y - End request

4. Connect to Mind server - Start request - Send run ID to identify yourself - Tell it new state y -

Receive confirmation - End request

3. For each server:

Connect to server - Start request - Send run ID to identify yourself - Send "End run" command -

Receive confirmation - End request

To clarify, the non-technical client user will use the servers through standardised client software. It is the client

software that will implement this overall control algorithm. The non-technical client user will see none of this.

8.2.1 The server may be involved in many runs

The unique run ID is because the server may be simultaneously involved in many other runs with other clients.

The server must keep the details of each run separate from each other. [Paulos and Canny, 1996] use a unique

run ID like this in Internet robotics, where a World is servicing multiple Minds. Here also the Mind server may

be involved in other Societies running at the same time. So the World-Wide-Mind is even stranger than having

bits of your mind distributed around the world. It means that bits of your mind are simultaneously running in

other minds.

8.2.2 The client controls time and may implement time-outs

The Mind server does not talk to the World server directly. Rather, the servers respond to short, finite-length

requests. The client algorithm controls how many such requests occur. It is up to the client how long it runs the

above loop for. The client may also implement a time-out. If the Mind takes too long to reply, the client could:

1. Abort the Mind request, query the World again to make sure the state is up to date, then query the Mind

again.

or:

2. Wait for the Mind to reply, so we know it is back online again. Then ignore its reply, query the World to

get up to date, and then query the Mind again.

Similarly, if the World is down, the client may wait until it is back up, and then requery the Mind with the new

state, instead of blindly executing the old, unexecuted action. This scheme could allow for a variable use of

time, where the client may take days to come back to each server with the next request.

8.2.3 This is not a stimulus-response model

Continuing the discussion about time, it is important to reiterate that the above does not define the Mind as a

stimulus-response machine. The Mind is simply receiving a periodic update about the state of the World. The

Mind may run according to a different clock to the World:

1. If the World changes slowly then a large number of x in a row may be the same. In this case the Mind is

receiving more updates than it needs, and if the model demands that it return an action in response to each

of these updates, then we will want to define as one of our actions an action for "Do nothing".

2. Alernatively, just because the current state x is the parameter that is sent along with the "Get action"

query, does not mean that the action returned is a function of x alone. The Mind may suddenly start

taking actions even though x has not changed. The Mind can be remembering all previous states, and

making its judgement based on that knowledge. It can be building a world model. It can have internal

clocks that cause it to change plans according to time-based action selection [Ring, 1992, Blumberg, 1994,

Whitehead et al., 1993, McFarland, 1989]. It can be learning, starting with random actions, and changing

its policy as it goes along. It can be engaged in long-term or short-term planning. It can be symbolic or

non-symbolic.

8.3 Mind AS server algorithm

The MindAS server responds to queries like any other server. Inside its "Get action" query is some complex

logic interrogating a list of Mind servers to find a winning action. This may be a loop but, unlike the client, it

will be a finite-length loop, not an indefinite-length loop.

Similarly, the MindAS server will receive an "Inform it about new state y" command after each action is

executed. Inside this command it will send an "Inform it about new state" command to all of its subsidiary Mind

servers, along with extra information that only the MindAS server knows, such as whether they were obeyed or

not.

8.3.1 The Mind AS server may also implement time-outs

The MindAS server may implement time-outs. It is periodically sending a query to all Mind servers. It cannot

afford to go round them in rotation. It cannot afford to wait until Mind server M1 has returned before sending a

request to M2. Instead it must send requests to all of them in parallel, and receive the replies as they come in.

With multiple Mind servers there is a much greater chance of some being slow, offline, or even gone altogether

(broken links). Any sensible MindAS server will implement a time-out. If some of the Mind servers do not

respond within the time-out, it will make a decision based on whatever actions have come in.

8.4 The servers (and client software) may implement any

general-purpose algorithm using the server queries

Clearly the above client algorithm pseudo-code could be made more efficient. Perhaps there is no need to

connect to the Mind after each action - it can get to find out what happened (what the new state is) next time

around the loop when it is asked for a new action. And next time round there is no need to query the World

again - we already know what the new state is from when we executed the action. But the point is that it is up to

the client to write this program. It will not be laid down in the protocol. Similarly, a server may implement any

algorithm it likes provided it responds to the set of queries expected of it.

9 List of server queries

The definition of the WWM comes down to this, the definition of the possible queries and responses of the

servers. The client software may implement any general-purpose algorithm based on these queries and

responses. The Mind servers, the World servers, the MindAS servers, the MindM servers and the WorldW

servers may each implement any general-purpose algorithm based on these queries and responses, provided that

they themselves respond to these queries.

9.1 World server

Request name Argument data Return data

New run 1. (OPTIONAL) Client URL (client

may be a real client, or another

WorldW server)

2. (OPTIONAL) Open-ended set of

arguments whose format is inter

preted by the World server. These are

parameters for the world, e.g.:

1. synchronous or asynchronous

2. shared or non-shared

3. start new world or join existing

world

4. virtual world size

5. parameters defining number and

type of other objects in virtual

world

1. Confirm (robot now in

use, new copy of virtual

world set up for this

client, new actor in exist

ing virtual world set up,

etc.)

2. world run ID

3. (OPTIONAL) world

display URL

 or

1. Refusal (client blocked,

client URL not valid,

failure in following trail of

credit from client URL,

payment or authentication

required, robot already in

use, bad parameters)

Get display URL 1. world run ID 1. (OPTIONAL) world

display URL

"No operation" (Possibly used

as a periodic clock timer, or

just to inform the server that

the client is still running.)

1. world run ID 1. Confirm

Get state 1. world run ID 1. x

Execute action 1. world run ID

2. a

1. y

2. (OPTIONAL) Score

(points scored by this

single action, according to

some scoring system at

the World server).

This score could be used

to drive automated

searches with no user

interface.

Reset (Reset the world as it

would be at the start of a run.

e.g. We are trying to solve a

problem. Previously we were

just learning. Now we want to

test our knowledge.)

1. world run ID 1. Confirm (This may or

may not reset the score.)

Reset score 1. world run ID 1. Confirm

Get current score 1. world run ID 1. (OPTIONAL) Score (total

points scored so far in this

run).

End run 1. world run ID 1. Confirm (Display URL is

removed, robot is freed

for other use, etc.)

2. (OPTIONAL) Score (total

points scored over course

of run).

Notes:

1. The unique world run ID is known only to the client, and used to identify itself each time when it returns

with a new query.

2. The state and the action are indefinite-length, undefined streams of plain text (terminated by </data>)

to be interpreted by the servers.

3. The World should probably support an action for "Do nothing".

A WorldW server has the same interface as a World server.

9.2 Mind server

Request name Argument data Return data

New run 1. (OPTIONAL) Client URL

(client may be a real

client, or another MindM

server)

2. (OPTIONAL) world

display URL

3. (OPTIONAL) world run

ID

4. (OPTIONAL)

Open-ended set of argu

ments whose format is

interpreted by the Mind

server. These are parame

ters for the mind, e.g.:

1. maximum allowable

timeout before mind

must return an action

1. Confirm

2. mind run ID

3. (OPTIONAL) mind display URL

(Mind may display at some URL

information about how it is being

used on this run, what it has learnt,

etc.)

 or

1. Refusal (client blocked, client URL

not valid, failure in following trail of

credit from client URL, world display

URL not valid, failure in following

trail of credit from world display

URL, payment or authentication

required, bad parameters)

Get display URL 1. mind run ID 1. (OPTIONAL) mind display URL

"No operation" 1. mind run ID 1. Confirm

Ready to suggest action? 1. mind run ID

2. (OPTIONAL) current

state x

1. Ready to suggest an action.

 or

1. Cannot suggest an action at this time

or in this state (e.g. has terminated, or

is waiting for pre-conditions to be

met).

Get action 1. mind run ID

2. x

1. a

2. (OPTIONAL) Q (predicted points

that will be scored by this action, see

below)

 or

1. Cannot suggest action at this time or

in this state.

Note that the action "Do nothing" is not

equivalent to "Cannot suggest action".

Inform it about state (Inform it

what happened when the action

was executed)

1. mind run ID

2. y

3. (OPTIONAL) Score

(points scored by action

according to World)

1. Confirm

2. (OPTIONAL) Q (points scored by

this action, according to the Mind’s

way of scoring points, which might

be different to how the World sees it).

Reset score 1. mind run ID 1. Confirm

Get current score 1. mind run ID

2. (OPTIONAL) Score

(points scored so far in

run according to World).

1. (OPTIONAL) Score (points scored so

far in run according to Mind).

End run 1. mind run ID

2. (OPTIONAL) Score (total

points scored in run

according to World)

1. Confirm

2. (OPTIONAL) Score (total points

scored in run according to Mind)

Notes:

1. A Mind server may call other Mind servers, thus setting up its own run with them, and its own run ID.

Presumably Minds will start other Minds with progressively smaller "maximum allowable timeout" param

eters.

9.2.1 Additional Mind L queries

A MindL server is a Mind server that learns, and supports the following additional queries:

Request name Argument data Return data

New run - MindL arguments 1. (OPTIONAL) Open-ended set of

arguments whose format is inter

preted by the Mind server. These are

parameters for the mind, e.g.:

1. Numeric values of a set of

rewards from which the mind

will now start learning

2. Q-Temperature

3. Proposed length of Q learning

run (for use in declining

Q-Temperature)

4. discounting factor (in Reinforce

ment Learning)

Parameters for a neural network mind

might include:

1. no. of hidden units

2. learning rate

2. (OPTIONAL) Other Client URL. Say

the server stores its learnt knowledge

relative to each client. This parameter

is to say "Give me the version of the

Mind you have constructed by learn

ing with the client at this URL."

1. Confirm

 or

1. Refusal (bad parameters,

other client URL not

valid, no data saved rela

tive to other client URL)

Get Q-Temperature 1. mind run ID 1. (OPTIONAL) Q-Temper

ature

Reset Q-Temperature / World

has changed

1. mind run ID

2. (OPTIONAL) Proposed length of

next Q learning run

1. Confirm (will reset

Q-Temperature to some

thing sensible)

Send explicit Q-Temperature 1. mind run ID

2. Q-Temperature

3. (OPTIONAL) Proposed length of

next Q learning run

1. Confirm

Get action 1. mind run ID

2. x

3. (OPTIONAL) Open-ended set of

arguments whose format is inter

preted by the Mind server. These are

parameters for this step only, e.g.:

1. Q-Temperature

1. a

2. (OPTIONAL) Q

(predicted points that will

be scored by this action)

 or

1. Cannot suggest action at

this time or in this state.

9.2.2 Additional Mind i queries

A Mind i server is a Mind server that accepts it may not be the only mind in the body, and supports the follow

ing additional queries:

Request name Argument data Return data

New run - Mind i arguments 1. (OPTIONAL) Open-ended set of

arguments whose format is inter

preted by the Mind server. These are

parameters for the mind, e.g.:

1. mind "strength"

2. W-Temperature

3. Proposed length of W learning

run

1. Confirm

 or

1. Refusal (bad parameters)

Get mind strength 1. mind run ID 1. (OPTIONAL) mind

strength

Change mind strength

(Could ask for a new instance

of the mind with a different

strength, or there might be

some reason to keep the current

instance and change its

strength)

1. mind run ID

2. mind strength

1. Confirm

Get W-Temperature 1. mind run ID 1. (OPTIONAL) W-Temper

ature

Reset W-Temperature / Collec

tion has changed (new compet

ing Minds, or old competing

Minds have gone)

1. mind run ID

2. (OPTIONAL) Proposed length of

next W learning run

1. Confirm (will reset

W-Temperature to some

thing sensible)

Send explicit W-Temperature 1. mind run ID

2. W-Temperature

3. (OPTIONAL) Proposed length of

next W learning run

1. Confirm

Get suggested action with

values

1. mind run ID

2. x

3. (OPTIONAL) Open-ended set of

arguments whose format is inter

preted by the Mind server. These are

parameters for this step only, e.g.:

1. Q-Temperature

2. W-Temperature

1. (OPTIONAL) a (my

suggested action)

2. (OPTIONAL) Mind

server URL (of the Mind I

want to call now)

3. Q (a measure of how good

this action is - how much

this action will benefit

me).

4. W (how much I am

prepared to pay to win this

competition). i.e. We must

have some idea what will

happen if we don’t win.

 or

1. Cannot suggest action at

this time or in this state.

The Mind i server must return

either an action, or the URL of

a server that will generate the

action, or a "Cannot suggest

action" message.

Get values for this action (How

good/bad is this action)

1. mind run ID

2. x

3. a

4. (OPTIONAL) Open-ended set of

arguments whose format is inter

preted by the Mind server. These are

parameters for this step only, e.g.:

1. Q-Temperature

2. W-Temperature

1. Q (How good is this

action - How much will

this action gain for you)

2. W (How bad is this action

- How much would you

pay to stop this and

execute your best action

instead. How much do

you lose by having this

executed instead of your

best action.)

It is possible for an action to

have high Q and high W.

Inform it about winner (Inform

it what happened)

1. mind run ID

2. (OPTIONAL) boolean (whether it

was obeyed). Why this might be

optional: A Mind server in Hierarchi

cal Q-learning was never even asked

for an action, so we can’t say it was

or wasn’t obeyed. But we still want to

tell it that we took someone else’s

action ak and got to state y.

3. (OPTIONAL) W (payment to the

Mind for losing - see Economy of

Mind)

4. (OPTIONAL) Who won (to be

precise, the Mind server URL of the

winner). For use in Nested systems.

5. (OPTIONAL) ak (the action that was

executed). Why this might be

optional: If it did not win, it may not

understand the action that did. But it

still wants to know that it did not win.

6. y

7. (OPTIONAL) Score (points scored

by action according to World)

1. Confirm

2. (OPTIONAL) Q (how

good this was, or how

many points scored, for

Mind).

3. (OPTIONAL) W (esti

mate by Mind of how

much it lost by this being

executed)

This command helps the Mind

learn how difficult it is to win

when we are in state x, and

how bad it is if someone else

wins. The Mind may decide to

increase the value of W next

time round in this state.

Notes:

1. Any Mind server may call another Mind server to get its action. Up until now, the Mind server was not

involved in any competition, so it did not have to report to the client that it was calling another server. In

response to "Get action", it just calls that other server and returns the action.

If it is involved in a competition, however, it would be far more efficient to postpone calling the other

Mind server until it has actually won the competition. So in this case it returns the other Mind URL to the

client. If it wins, the client can send "Get action" to that other Mind.

9.2.3 Additional Mind Feu queries

A MindFeu server is a Mind server that accepts Feudal commands of the form: "Take me to state c" [PhD,

§18.2]. The other Mind servers have their own motivations and suggest actions according to them, and clients

using them can then decide whether or not to use these suggestions. But a MindFeu server does not have its own

goals, and is only used via this call by another Mind server which has goals:

Request name Argument data Return data

Take me to state 1. mind run ID

2. x

3. destination state c

4. (OPTIONAL)

Open-ended set of argu

ments whose format is

interpreted by the Mind

server. These are parame

ters for this step only, e.g.:

1. Q-Temperature

2. W-Temperature

1. (OPTIONAL) a (my suggested

action)

2. (OPTIONAL) Mind server URL (of

the Mind I want to call now)

3. (OPTIONAL) Q (how good a is for

the purposes of getting from x to c)

4. (OPTIONAL) W (how important it is

to win the competition now, for the

purposes of getting from x to c)

The MindFeu server must return either an

action or the URL of a server that will

generate the action.

How good/bad is this action (to

take me to state c)

1. mind run ID

2. x

3. c

4. a

5. (OPTIONAL)

Open-ended set of argu

ments whose format is

interpreted by the Mind

server. These are parame

ters for this step only, e.g.:

1. Q-Temperature

2. W-Temperature

1. (OPTIONAL) Q

2. (OPTIONAL) W

9.2.4 Additional Mind AS queries

A MindAS server is a Mind server that resolves competition between multiple subsidiary Mind servers. Either

this is hidden from the client (and so the server just appears as an ordinary Mind server above), or else the client

provides this list via a special constructor. Having provided the list via the constructor, the client thereafter uses

the server just like an ordinary Mind server.

One interesting issue would be, if we have a hierarchy of Action Selection competitions, and the MindAS server

will appear as just another primitive Mind i server competing in a higher-level Action Selection competition,

then where does it get its W-values from? Does it pass upwards the W-values from the winning Mind server

below it? Of course, interesting as this is, this is a problem for the server author, not an issue for the WWM

specification here. The MindAS server author must somehow use the queries defined here to gather information

from its subsidiary Mind servers to compete at the higher level.

Request name Argument data Return data

New run - AS arguments 1. (OPTIONAL) List of Mind server

URLs

2. (OPTIONAL) Open-ended set of

arguments whose format is inter

preted by the AS server. These are

parameters for the AS mechanism,

e.g.:

1. which of a set of algorithms to

use

1. Confirm

 or

1. Refusal (mind URLs not

valid, failure in following

trail of credit from mind

URLs, bad parameters)

Add mind to collection 1. mind run ID

2. Mind server URL

1. Confirm

 or

1. Refusal (mind URL not

valid, failure in following

trail of credit from mind

URL)

Remove mind from collection 1. mind run ID

2. Mind server URL

1. Confirm

A MindM server may appear with the interface of any of these types of Mind server.

10 How to implement some existing agent architec

tures as networks of WWM servers

We now show how a number of existing models of agent minds can be implemented as networks of WWM

servers using the server queries above.

10.1 Hand-coded program

A hand-coded mind program can clearly be implemented as a single Mind server, receiving x and returning

a. There are a vast number of models of agent mind, whether hand-coded, learnt or evolved, that will repeat

edly produce an action given a state. Most of these could be implemented as WWM servers without raising any

particular issues apart from having to agree on the format of state and action with the World server.

We will not discuss any of these further, except where they raise particular issues with respect to the WWM. For

example, below we will refer in detail to different models of Action Selection, because these raise particular

WWM issues.

10.1.1 Initial test - Eliza Mind talks to Eliza World

An initial test of the model could be by connecting two Eliza-type programs together to have a conversation. In

this case x and a are both streams of text. The output a for one is the input x for the other. Which we

regard as the "Mind" and which as the "World" under our scheme does not matter. Even in this initial test we

could implement some advanced ideas, such as time-outs, and Mind servers keeping track of previous states. It

also raises the issue of how a human could become part of the response of a World server or a Mind server.

10.2 The Subsumption Architecture

A Subsumption Architecture model [Brooks, 1986, Brooks, 1991] could be implemented as a hierarchy of

MindM servers, each one building on the ones below it. Each one sends the current state x to the server

below it, and then either uses their output or overrides it. So each Mind server sees state x and gets to

respond. As in Brooks’ model, a set of lower layers will still work if the higher layers are removed. On the

WWM, there may be many choices for (remote, 3rd party) higher layers to add to a given collection of lower

layers.

10.3 Serial models

In serial models, a mind server will "complete" its activity before another mind server will start [Singh, 1992,

Tham and Prager, 1994, Wixson, 1991]. This can be driven by a master MindM server that passes control from

server to server. This MindM server needs to know when each goal terminates, which requires it to have a lot of

intelligence.

To reduce the demands on the intelligence of the master server, each server itself may know whether it is ready

to execute or not (preconditions not true yet, or it has just completed its goal). The server can return this in

response to the "Ready to suggest action?" query. Then the MindM server only needs to know the order of the

chain of servers. The servers themselves tell it when it is time to switch to the next server.

Or we could avoid having a master MindM server altogether if each server, when its goal is completed, will

pass all requests for actions thereafter on to its successor server (which it knows about). Then we simply interact

with the Society through the first mind server in the chain.

10.3.1 Maes’ Spreading Activation Networks

Maes’ Spreading Activation Networks [Maes, 1989, Maes, 1989a] or Behavior Networks consist of a network of

"servers" which are aware of their preconditions. Servers can be linked to from other servers that can help to

make those preconditions come true, or be inhibited by other servers who will cause their preconditions to not

hold. They can in turn link to other servers whose preconditions their behavior can affect. This might be imple

mented on the WWM by one server constructing the state x for the server it is calling, putting the precondi

tions into x.

Maes’ spreading activation mechanism spreads excitation and inhibition from server to server. This might be

implemented on the WWM using the "Change mind strength" message.

10.4 Reinforcement Learning

An ordinary Reinforcement Learning (RL) agent, which receives rewards and punishments as it acts [Kaelbling

et al., 1996], can clearly be implemented as a single Mind server. For example a Q-learning agent [Watkins,

1989] builds up Q-values ("Quality"-values) of how good each action is in each state: Q(x,a). This is stored

in a data structure inside the agent - either a straightforward lookup table, or else a generalisation such as a

neural network. Then, given a state, the agent can produce an action based on these Q-values. This maps easily

to the WWM model of a Mind server above, as does any similar notion of a state-space learner, e.g. [Clocksin

and Moore, 1989].

When learning, the Q-learner can calculate its own reward based on x, a and y [PhD, §2.1.3]. So long as

the client informs it what state y resulted from the previous action a, it can calculate rewards, and learn.

10.5 Hierarchical Q-Learning

Hierarchical Q-Learning [Lin, 1993] is a way of driving multiple Q-learners with a master Q-learner. It can be

implemented on the WWM as follows. The client talks to a single MindAS server, sending it x and receiving

a. The MindAS server talks to a number of Mind servers. These do not necessarily have to support all of the

advanced queries of the Mind i server above. They may simply return an action, unaware that there are other

minds in the body. The MindAS server maintains a table of values Q(x,i) where i is which Mind server

to pick in state x. Initially its choices are random, but by its own reward function, noting what states the

choices take us to, the MindAS server fills in values for Q(x,i). Having chosen i, it passes on the action

suggested by Mind server i to the client.

In fact, to save on the number of server queries (which is a more serious issue on the WWM than in a

self-contained system), we would do the following. Each time step, when presented with a state x, the

MindAS server makes a decision based on its Q-values (initially random) and then, having picked action i,

queries a single Mind server i for its action. Note then that the question of being obeyed or not obeyed does

not apply to the other Mind servers - they were not even asked for an action on this step.

Whether they were asked for an action or not, the other Mind servers can still learn while in this system, if the

MindAS server tells them what action it executed. i.e. They will need to support at least one of the advanced

Mind i queries above. In general, any Mind server in a competition needs to be informed if it was obeyed, and

what action was taken. Otherwise it may think that its action (which was not taken) led to the new state.

One interesting possibility with Hierarchical Q-Learning on the WWM is that the MindAS server need not know

its list of Mind servers in advance. It can be passed this list by the client at startup, using the special constructor

defined above. Of course then it will have to learn from scratch (i.e. it is sent a high Temperature parameter).

Another possibility is that the subsidiary Mind servers need not be Q-learners. They could be any type of Mind

server, and the MindAS server simply learns which one to let through.

10.6 Action Selection with a single query or multiple queries

For many of the following models it will be useful to distinguish between two types of MindAS server:

1. An AS s server makes a single query of each Mind server before making its decision.

2. An AS m server makes multiple queries of each Mind server before making its decision.

Hierarchical Q-Learning is not either of these because it does not even query all Mind servers once. Based on its

 Q(x,i) values it just makes one query of one Mind server.

10.7 Static measures of W

We will consider a number of schemes where Mind servers promote their actions with a weight W, or

"W-value". Ideally the W-value will depend on the state x and will be higher or lower depending on how

much the Mind server "cares" about winning the competition for this state [PhD, §5].

A static measure of the W-value [PhD, §5.3] is one in which the Mind server promotes its action with a value of

W based on internal reasons, and independent of the competition. Any such method (including, say, W=Q) can

clearly be implemented as a Mind i server. There will be a number of Mind i servers, and then a simple MindAS

server which lets through the one with the highest W-value. This is an AS s server.

10.8 Dynamic measures of W

A dynamic measure of W [PhD, §5.5] is one in which the value of W changes depending on whether the Mind

server was obeyed, and perhaps on who won instead if it did not. Clearly this is an AS s server that queries once,

lets through the highest W, and then reports back afterwards to each server whether or not it was obeyed, using

the WWM commands defined above. The server may then modify its W-value next time round in this state.

10.9 W-learning

W-learning [PhD, §5, §6] is a form of dynamic W where W is modified based on (i) whether we were obeyed or

not, and (ii) what the new state y is as a result. This can clearly be implemented on the WWM as an AS s server.

All the variations, such as Stochastic highest W [PhD, §6.5], and the winner not altering their W-value [PhD,

§6.3], can clearly also be implemented using the WWM queries defined above.

In the pure form of W-learning [PhD, §6, §11, §13] the Minds do not even share the same suite of actions, and

so, for example, cannot simply get together and negotiate to find the optimum action (see below). The inspira

tion was simply to see if competition could be resolved between Minds that had as little in common as possible.

I was unable to give convincing examples where this might arise. Now with the WWM, and Minds coming from

totally different origins, I hope it is clearer what the usefulness of this is. This is the type of AS method we will

need for many situations on the WWM.

10.10 Strong and Weak Mind servers

[PhD, §8] showed how altering the absolute size of a Q-learning Mind server’s rewards can change the size of

the W-values it presents, without altering its policy. To be precise, we can multiply all the base Q-values by any

constant c to produce an agent with the same policy but different W-values. As a result one could ask for a

"strong" version of a Mind server, which would have the same policy as a weak version, but present larger

W-values. This would be done by presenting the "mind strength" constant c as an argument to the server at

startup. For a full explanation of how to carry out "Normalisation" and "Exaggeration" of the same basic

behaviour, see [PhD, §C, §D]. Artificial Selection could search for good combinations of strong and weak

servers by either:

1. Automated search.

or:

2. By hand. Slowly increase or decrease the strength values, leaving all the details of the competition to be

resolved automatically, and then observe the resulting global behaviour [PhD, §16.3, §17.2].

10.11 Matching World state definition with Mind state defi

nition

Reinforcement Learning also shows us how we can get away with not defining a format for the state x and

action a. In RL, x and a are abstractions, so that, for example, we define a model where executing

action a in state x leads to state y with probability Pxa (y) - yet there is no need to actually define the

format of x and a at this point.

Similarly with the WWM we leave state and action as undefined streams of text data terminated by </data>.

 How these streams are to be decoded is a matter for the World and Mind servers to agree among themselves.

Servers will advertise (at their URLs) what format they expect and what format they generate, and others will

act accordingly. Collections of servers that have incompatible formats, and therefore do not work, are not a

problem. People will expect that vast numbers of Societies will not work at all, or work poorly, and the whole

mindset will be to search for ones that work better than others, follow "Top 10" lists of good performers in a

certain World, and so on. Societies that are not compatible, or even ones that are compatible but work poorly,

will simply not be advertised.

10.11.1 "Islands" of compatible worlds

This does raise the question, though, of whether different sub-zones of the WWM will develop, each incompati

ble with the other. It seems that this will indeed happen. For any World, there will be an island of Minds that

understand this World and interpret its definition of state x or some subset of x. If the World is popular,

other Worlds might be built to the same specification, so that the same Mind can act in all of these Worlds [Ray,

1995]. There will be a (perhaps very large) "island" of compatible Worlds and Minds, separate from other

islands built to different specifications.

The AS servers might be more independent of the World definition, so that the same AS server can be used in

different "islands". The AS server will receive x and return a, but need not understand the structure of

either, but just pass on x to the Mind servers that do understand it, make a decision as to who to pick based

on, say, the highest W-value, and then return whatever meaningless stream of data they provide as the action a.

10.11.2 The "island" of the physical world

For real robots, since the real physical world is the same for everyone, one might think there would be just one

island - so that any real-world Mind could act on any real-robot World server. Not so, of course, because how

you sense the real world (state x) depends on what sensors the robot hardware possesses, and what format

they deliver their input in. One could imagine, though, that there will be a separate island clustered around each

robot make. For instance, Mind servers that will run on any Khepera robot. Mind servers that will run on any

LEGO Mindstorms robot. Mind servers that will run on a Nomad robot that has certain specified add-ons.

So, in conclusion, the network of World-Wide-Minds will not be unified, but will consist of a number of sepa

rate incompatible islands.

10.11.3 Mind servers with different senses in the same Society

[PhD, §6.6] discussed where Mind servers may have different senses, even within the same Society, which

makes their competition even more confusing. Sometimes in a particular state they win, and sometimes, in what

seems to be exactly the same state (but is perceived by another Mind server as a different state) they lose

(because the other Mind server competed differently).

In a WWM implementation of this, the MindAS server may receive the full state from the World, and then send

a different sub-space of that to each Mind server as its input state. This is actually what we did with Hierarchical

Q-learning [PhD, §4.4]. Both W-learning with subspaces [PhD, §7, §8] and W-learning with full space [PhD,

§10] can also clearly be implemented as AS s servers using the WWM primitives above.

10.12 Global Action Selection decisions

If Minds do share the same suite of actions, then we can make various global decisions. Say we have n Mind

servers. Mind server i’s preferred action is action a i . Mind server i can quantify "how good" action a

is in state x by returning:

Q i (x,a)

and can quantify "how bad" action a is in state x by returning:

Q i (x,a i) - Q i (x,a)

Then we have 4 basic approaches [PhD, §14]:

1. Maximize the Best Happiness:

MAX a MAX i Q i (x,a)

which is in fact the same as static W=Q above, and can be implemented as an AS s server, with just one

query to each Mind server to get its best action and its Q-value.

2. Minimize the Worst Unhappiness:

MIN a MAX i (Q i (x,a i) - Q i (x,a))

which is an ASm server, requiring multiple queries of each Mind server.

3. Minimize Collective Unhappiness:

MIN a [SUM i (Q i (x,a i) - Q i (x,a))]

which is an ASm server.

4. Maximize Collective Happiness:

MAX a [SUM i Q i (x,a)]

which is an ASm server.

10.13 Other Action Selection methods based on RL

There are a number of other related AS methods, which can all be implemented as WWM servers:

1. Negotiated W-learning [PhD, §11] is an ASm method.

2. Collective W-learning [PhD, §12.2] can be implemented by the MindAS server building up a table of

W(x,i) - the combined loss that Mind server i causes for everyone else when it wins (each server

reports back to the MindAS server their own loss W). Like Hierarchical Q-learning, this is neither AS s nor

ASm . It chooses a Mind server based on its W-values table and then makes one query of one server to

return its action. Then it sends a command to every server to tell it what happened, and adjusts its W-value

according to the losses the servers report in their responses. All the variants of this can clearly be imple

mented as well, including Stochastic lowest W [PhD, §12.2.2] and Negotiated Collective W-learning

[PhD, §12.2.4] (which is an ASm method).

3. Collective Equality [PhD, §12.4] is an ASm method.

4. Any form of scaling the W-value [PhD, §8.1.2] can be implemented as well, with extra complexity in the

Mind server, but no need for extra server queries.

5. As referenced in [PhD, §F], there are other measures of Happiness and Unhappiness that may or may not

make sense, all of which can be implemented by single or repeated WWM queries.

10.14 Other parallel models

The DAMN Architecture [Rosenblatt, 1995, Rosenblatt and Thorpe, 1995] implements an action selection

method similar to Maximize Collective Happiness. The Q-values of Mind server i are multiplied by weights

w i which reflect the current priorities of the system. This could be implemented as an ASm server, where the

AS server maintains a set of weights w i .

Product Maximize Collective Happiness [PhD, §15.5.2], adapted from Grefenstette’s work [Grefenstette,

1992], can be implemented on the WWM as an ASm server.

A number of other authors [Aylett, 1995, Tyrrell, 1993, Whitehead et al., 1993, Karlsson, 1997, Ono et al.,

1996] implement, using a variety of notations, one of the 4 basic AS methods defined above [see PhD, §15.4].

Though none, as far as I am aware, have tried a Minimize the Worst Unhappiness strategy.

10.15 The AS server remembering the winner

To reduce the number of server queries needed, the AS server may remember who won the state last time, and

build up a table k(x) for the winner (or a(x) for compromise actions) so it does not have to run the

competition again [PhD, §11]. Obviously this only works if the servers remain unchanged (they are not learn

ing), and if the collection of servers remains unchanged (no new servers, or old ones leaving).

10.16 Dynamically changing collections

To continue that last point, the WWM server queries allow for a collection of Mind servers where new ones are

added or old ones removed during the course of the run [PhD, §17.6]. The implementation of the "Add mind"

and "Remove mind" commands in the MindAS server will then send a "Collection changed" message to all of

its subsidiary Mind servers, to inform them that the competition has changed and they may have to re-learn their

W-values.

10.17 Nested Mind servers

Digney [Digney, 1996] defines Nested Q-learning, where each Mind in a collection is able to call on any of the

others. Each Mind server has its own set of actions Q i (x,a) and a set of actions Q i (x,k) where action k means

"do whatever server k wants to do" (as in Hierarchical Q-learning). Of course we already have in general that

a MindM server can call other Mind servers. What is different here is:

1. It learns how good it is to call other servers. To do this, it needs to be supplied with some extra informa

tion, such as who won.

2. Because it learns, it can be supplied with the list of Mind servers at startup, rather than having it pre-coded.

In a WWM implementation, each Nested server has a list of Mind URLs, either hard-coded or passed to it at

startup. So the Nested server looks like a MindAS server co-ordinating many Mind servers to make its decision.

But of course it is not making the final decision. It is merely suggesting an action to the master MindAS server

that coordinates the competition between the Nested servers themselves. When the master MindAS server is

started up with a list of Mind servers, it passes the list to each of the servers.

Consider the number of server queries in a Nested WWM system. The master MindAS server is given x and

asked for an action a. It sends x to each Mind server. Server i looks at its Q-values and either suggests

an action directly, or returns the URL of some server j. Server j is not yet queried. We wait to see if

server i can win the competition. (In fact, server j may already have been queried separately for its own

action.) If server i wins, then we query server j and get an action, which may be "Do what server k

does" and so on. As well as allowing the Nested server to return a Mind URL instead of an action, we also need

the master server to tell it the Mind URL of the winner. Remember that in Hierarchical Q-learning, the master

server needs to know who won, so it can put values on Q(x,i). But of course it knows itself who won. Here, the

Nested server needs to know who won, so it can put values on Q i (x,k). So it needs to be told who won by the

master server.

10.17.1 Each server calling a different list of servers

In the basic model we just described, all Mind servers can call all other Mind servers in the list. But in fact, the

list could be different for each server. Each server could hard-code its own list of servers that it may call, similar

to how any hand-written MindM server hard-codes its list of servers. One confusion would be, when we tell the

server who won, and we pass it the URL of a server that is not in its list of possible servers to call.

10.17.2 Servers outside the AS loop

[PhD, §18.1] also shows how some of the Nested servers might actually be outside the Action Selection compe

tition, and simply wait to be called by a server that is in the competition. I call these "passive" servers. We have

the same with hand-coded MindM servers, where some Mind servers may have to wait to be called by others. A

server may be "passive" in one Society and at the same time "active" (i.e. the server is in the Action Selection

loop) in a different Society.

10.18 Feudal Mind servers

Watkins [Watkins, 1989] defines a Feudal (or "slave") Q-learner as one that accepts commands of the form

"Take me to state c". On the WWM, these Feudal Mind servers will be driven by other Mind servers that

actually have preferences about what goal state to get to. In Watkins’ system, the command is part of the current

state. Using the notation (x,c),a -> (y,c) the slave will receive rewards for transitions of the form:

(*,c),a -> (c,c) So the master server drives the slave server by explicitly altering the state for it. We

do not have to change our definition of the server above. It receives x and produces a. It is just that the

server driving it is constructing the state x rather than simply passing it on from above.

Another possibility is that the real state and the command are explicitly separated in the server query, which is

what we allowed for with the additional MindFeu queries above. Using either of these approaches, the WWM

model allows for Mind servers that provide a service of taking one to explicit goal states. e.g. Moore [Moore,

1990] has a concept of an explicit goal state, and Kaelbling’s Hierarchical Distance to Goal (HDG) algorithm

[Kaelbling, 1993] addresses the issue of giving the server new explicit goal states at run-time.

10.19 The sub-symbolic Society of Mind

The Nested and Feudal models are combined in [PhD, Fig. 18.4] showing the general form of a Society of Mind

based on Reinforcement Learning. It is suggested that Reinforcement Learning would be one of the most fruitful

areas in which to begin implementing the WWM. That is, we shall begin with a sub-symbolic Society of Mind.

Indeed, the whole model of a complex, overlapping, competing, duplicated Society of Mind that we have devel

oped in this paper is based on the generalised form of a Society of Mind based on Reinforcement Learning.

10.20 More complex communication between Mind servers

Baum’s Economy of Mind [Baum, 1996] has new Mind servers paying off the old ones to gain control. This can

still be done through our model. The payments would be managed through the MindAS server, which receives

payments through the W-value, and redistributes them through the "Inform it about winner" command.

10.21 Is this a sub-symbolic model?

So far we have only defined a protocol for conflict resolution where the AS server makes queries of the Minds

for different numeric weights, e.g. "How much will you pay to stop this happening?". As discussed, we may

need further protocols for more sophisticated, symbolic communication among Mind servers. We imagine that

numeric weights will be easily generated by sub-symbolic Minds, and are harder to generate in symbolic Minds.

This is because symbolic Minds often know what they want to do but not "how much" they want to do it.

Sub-symbolic Minds, who prefer certain actions precisely because numbers for that action have somehow risen

higher than numbers for other actions, may be able to say precisely "how much" they want to do something, and

quantify how bad alternative actions would be [PhD, §5.2].

The Action Selection model may be sometimes limiting, though, in demanding that the Mind win the competi

tion objectively. We cannot just say that "Mind M3 should always win when the World is in state Z". Instead,

M3 has to win the competition in that state. The solution then is we can surround the Action Selection by a

MindM server that ensures that M3 wins in state Z.

It may be that in the symbolic domain we will make a lot more use of MindM servers, and maybe even avoid

Action Selection altogether. This might be a popular alternative to having Minds generate Weights to resolve

competition. The drawback, of course, is that the MindM server needs a lot of intelligence. It needs to under

stand the goals of all the Mind servers. This relates to the "homunculus" problem, or the need for an intelligent

headquarters, see [PhD, §5].

11 HTTP CGI using XML

We now ask what actual technology should we use to implement the WWM queries. I suggest one overriding

objective:

1. That the WWM server authors be required to know as little as possible to get their servers on the network.

The server authors are interested in AI, not necessarily in networks. They may only know AI programming

languages such as LISP. They may have never written a network application, and they may not want to learn. If

we accept this criterion, then we should seek a lowest-common-denominator approach that will enable AI

researchers to put their minds and worlds online with the minimum of delay. Ideally, we would have the follow

ing:

1. The WWM server authors can write their program in any programming language, according to any

programming methodology, on any operating system.

2. The WWM server authors do not have to install any new software, but can run their programs on existing

Web servers.

3. World server authors do not have to learn any particular language for describing a world, such as VRML.

4. The WWM server authors do not have to learn any new programming language, such as Java, Perl, or any

other language.

5. The WWM server authors do not have to learn any new network or object-oriented programming tech

niques. If all they know how to do is read from stdin and write to stdout, that should be sufficient to write a

WWM server.

As [Bosak and Bray, 1999] put it: "schemes that rely on complex, direct program-to-program interaction have

not worked well in practice, because they depend on a uniformity of processing that does not exist." [Paulos and

Canny, 1996] make a strong call for a lowest-common-denominator approach in remote access to robots.

11.1 HTTP CGI

It is clear what the lowest-common-denominator system is on the network today, the system by which thousands

of programmers have put programs and scripts online that were never online before. It is CGI. It is proposed that

the lowest-common-denominator implementation of the WWM be done using CGI across HTTP. Every AI

programmer has access to a HTTP server with CGI, and every AI programmer can write a program that receives

stdin and writes to stdout.

11.2 XML

The data transmitted would not be HTML, as in "normal" CGI scripts, but would rather be the server queries,

responses, and associated data. It is proposed that this be encoded as text-based XML [Bosak and Bray, 1999]

rather than in a binary format. The advantages would be:

1. XML is human-readable text, so it can be read and altered by hand on any system. One does not have to go

through any particular application. In particular, it is easy to get your own program (in any language) to

generate XML text output.

2. As for reading XML input, it is a standard format (open tag, close tag) so that XML parsers are available in

most languages (and it is easy to parse yourself in any case).

3. It can be transmitted by CGI now to and from existing Web servers, with no extra modification needed.

4. It is easy to extend the tag definitions (and hence the server query definitions) in future, without breaking

the old definitions.

11.2.1 XML encoding of server queries

An example of an XML-encoded query would be as follows. The client asks the mind server to set up a new

run, telling it what world we will be running it in. HTTP CGI POST is used to send the data to the mind server,

so that the mind server receives the following XML code on stdin:

<xml>

<query name="New run">

<data name="world run ID"> 40031 </data>

<data name="world display URL"> http://worldserver/currentruns/40031.html </data>

</query>

</xml>

The mind server replies, assigning the client a unique run ID. The server writes to stdout:

<xml>

<response name="New run">

<data name="mind run ID"> 5505 </data>

<data name="mind display URL"> http://mindserver/currentruns/5505.html </data>

</response>

</xml>

The client uses this unique ID in each subsequent request:

<xml>

<query name="Get action">

<data name="mind run ID"> 5505 </data>

<data name="state">

x

</data>

</query>

</xml>

The state is simply a series of text characters representing the state, terminated by the </data> tag. How to

decode these characters is something that the servers have to agree among themselves. The mind server returns

an action:

<xml>

<response name="Get action">

<data name="action">

a

</data>

</response>

</xml>

Again, the format of the action is something the servers have to agree on.

11.2.2 "AIML"

When we have precisely expressed the server queries as XML, we might call the resulting markup language

"AIML" or "AI Markup Language".

Though it has to be noted that the name "AIML" is currently being used in a much more restricted domain - It is

being used by the ALICE chatbot project [alicebot.org] as a means of allowing users to define their own chat

bots. In this case, XML is being used to define the program itself rather than the data being passed back and

forth. A chatbot is only one form of many possible types of WWM server, so a name like "ChatML" or even

"ElizaML" would have been much more appropriate than "AIML". But criticism of this point aside, one inter

esting thing about ALICE is that in trying to allow non-technical users construct entire servers, in some ways it

takes 3rd party involvement even further than envisaged in this work.

http://alicebot.org/

The Swarm project, which aims to provide a standardised simulator for multi-agent worlds, has also recently

moved to XML because of the restrictions inherent in forcing the use of any particular programming language

[Daniels, 1999]. Again, XML is used as a way of defining the environment and agents and avoiding program

ming, rather than as a way of communicating between separate minds and worlds. [Noda et al., 1998] is proba

bly the closest previous work to the WWM, using a client-server design, programming language independent,

transmitting ASCII strings.

11.3 Addressing

All requests to a WWM server are requests to a CGI program on a Web server:

http://site/directory/program

All arguments (including the type of WWM request being sent) are passed in stdin.

11.4 Persistent CGI

Normally, CGI is 1 process per request. In a normal CGI request, input comes in on stdin, a new process is

started, output is generated on stdout, and then the process terminates. Here, though, we have a WWM server

program where we want to send it multiple requests at different times over the course of a long run. The ques

tion is: How do we maintain state in between requests?

1. Save to disk and Restore - The first issue is whether we can maintain state at all. The

lowest-common-denominator approach would be for the programmer to save the state of their program to

disk after each WWM request, and then restore it (from disk) when the next request comes in. All

programmers can do this, though it may be some work. It is also very inefficient, starting the program

again from scratch for each new request. But with powerful machines, this might not matter greatly. The

important point is that the AI programmer can save and restore the state without learning any new

programming techniques.

2. "Persistent CGI" - The second issue is whether an efficient WWM server can be built. For example, one

where the "Start run" request starts a process running that does not terminate when the "Start run" request

terminates. Later CGI requests simply talk to this independently-running process. Finally, the "End run"

CGI request terminates the process.

It is no surprise that this is actually a well-known issue with CGI programs, and there are many

approaches to it discussed in the CGI community, especially where scripts talk to large databases. How

exactly to do it depends on the programming language and server used, and there is no standard solution.

It is not the job of the WWM to propose a solution to the problem of persistent CGI. WWM server authors

should be able to use any of the technologies that the CGI community propose. Here we simply note that for an

efficient WWM server the server author may need to learn some network programming, which is something we

wanted to avoid. But this is not necessary to set up a WWM server at all, which can be done using the

save-to-disk method.

The AI programmer might get the server online initially using save-to-disk, and maybe sometime later, after

learning some network programming, convert to a persistent process. The client would not notice any difference

(except a speed improvement).

11.5 Asynchronous worlds

The CGI model is client-driven. Servers only respond to client requests. So how could we have an asynchronous

world - a World that changes even when no client is making requests to it? Note this is actually the same issue

as persistent CGI above: How can we start a process that does not end when the "Start run" request ends, but

that carries on, and only ends when a new "End run" request is made?

It is also the same issue as: If the client never issues an "End run" command, can we time it out if we haven’t

received queries from it in a long time. This would be important to relinquish control of a shared resource, e.g. a

robot [Stein, 1998]. This could still be client-driven: The old client gets timed out when the new client makes its

"Start run" attempt.

There is a similar "quick and dirty" way of making an asynchronous world while still retaining the simple

client-driven model: The next time the client makes a request, the server calculates the time since the last

request, and runs the world forward that number of timesteps before replying. An alternative, but more complex

way, would be for the server to have its own "clock-tick" client, which sends it a periodic clock tick using the

"no op" command. Each time it receives a clock tick it can update the world.

Part 4 - Future work and Conclusion

12 Future work

This is clearly the start of an enormous program of implementation and testing. The major immediate issues to

be solved are the following:

12.1 Define the server queries

1. Nail down the list of server queries and responses above. Is this list sufficient to implement all current

sub-symbolic agent minds and worlds?

2. "AIML" - Precisely express these server queries and responses in XML. Define which fields are manda

tory and which are optional. Define all error conditions, error codes, error text messages, etc.

12.2 Define the client user view

Having defined the server queries and encoded them in XML, server authors can now construct servers, write

programs to talk to servers, display the results, etc. So in that sense, our work is done.

But how about the client user? How could they use the system, without having to write programs to talk to

servers? Obviously some client software is needed. The basic question is whether this software can be provided

through existing Web browsers or whether some plug-in or separate client application needs to be installed by

each user.

12.2.1 Client use through existing Web browsers

Consider that we want the non-technical client user to be able to do the following:

1. Browse existing Mind and World servers.

2. Specify a Mind server with a number of arguments (some of which may be the addresses of other Mind

servers), and a World server with a number of arguments.

3. Be able to link to this Mind/World combination (with arguments) from a Web page, so that any 3rd party

may run it.

4. Run this Mind/World combination.

5. View the run in progress. 3rd parties can also view the run in progress.

6. The run either lasts for a fixed time, or until the user clicks some "End run" button.

This could in fact all be done in existing Web browsers, if we can assume the existence of an Internet portal to

help the non-technical user:

1. Servers have URLs at which they describe what they do.

2. A public site, that we shall call WWM.COM, helps clients construct WWM combinations. It provides a

HTML form in which one can specify the two remote servers, plus arguments for them.

3. When you complete the form, it sets up a client URL at WWM.COM explaining the arguments and what

servers are being used, and providing a "Start run" button.

4. When you (or any 3rd party) click the "Start run" button on this page, a special client program starts. This

program will implement some algorithm making requests to the remote Mind and World servers, managing

time-outs, repeated queries, and so on. Perhaps this program actually runs on WWM.COM’s machine. Or

perhaps it is a Java applet written by WWM.COM and running on the client machine.

5. Once the client user clicks the "Start run" button, WWM.COM directs us onto a new page, specific to this

particular run:

http://WWM.COM/user-no-5503/combination-no-7/run-no-20

This provides links to the World display URL, Mind display URLs, etc. This run can be viewed by any 3rd

party.

6. Either the client program runs for a fixed number of steps and then terminates (in which case it could

appear to the client user as a normal CGI script, albeit a very long one), or else clicking the button starts a

program that does not terminate. In the latter case WWM.COM provides an "End run" button perhaps in

the Java applet or perhaps on the page above. When clicked, this terminates the program that "Start run"

began. In fact we want other people to be able to view the run at the URL above, but only the client user

that started the run (which is not necessarily user-no-5503) can terminate it. In which case we store infor

mation on the client side, e.g. as a cookie, or perhaps have a special URL:

http://WWM.COM/user-no-5503/combination-no-7/run-no-20/uniqueid

Presumably the client user can bookmark this, log out, and wait for weeks before coming back and hitting

"End run".

WWM.COM will have pages listing of all the combinations constructed on it, perhaps sorted by World. Using the

"End run" information, WWM.COM may be able to highlight combinations that scored well, run "Top 10" lists

and so on.

Servers have URLs as well, and each server could have links to all the servers it calls, all the servers that call it,

all the combinations it was ever part of (i.e. it would point to many different client URLs around the network),

and which of these combinations scored well.

12.2.2 Dedicated client software

While it should be possible to use the WWM through a normal Web browser, it should be possible to write a

dedicated client application that makes using it easier for non-technical client users (and probably server authors

too). Ideally this software would still allow us, when we are finished, to link to a successful Combination that

can still be run by someone who does not have the software. Also conversely, clicking on a Combination in our

Web browser would launch this software.

12.3 Testing

To fully define the above, we should build and test many different types of WWM networks:

1. Implement all of the agent minds and worlds mentioned in this paper, including Tyrrell’s world, Noda’s

soccer server, a generic Q-learning mind, generic Action Selection servers, etc.

2. Implement all of the various alternative forms of WWM servers and networks described in this paper -

MindM servers, MindAS servers, WorldW servers, multi-level networks, real robots, shared virtual worlds,

world display URLs (for virtual worlds and real robots), time-outs, synchronous and asynchronous worlds,

learning servers, automated searches with no user interface, evolutionary searches, etc.

3. Take existing AI projects that have already been put online [see Yahoo list of AI programs online] and put

them online as WWM servers - including Eliza, MGonz, etc.

12.4 Long-term prospects

If all of the above is solved, we should have a scheme for implementing the full promise of the WWM for all

sub-symbolic models of mind, and many simple symbolic ones. What, then, is the next step?

1. Implement more complex symbolic models of mind as networks of WWM servers. Presumably these will

be more high-bandwidth than the schemes discussed in this paper. The servers will communicate by some

agent language, rather than just by numeric values. As discussed above, standardising a high-level agent

language is difficult.

Within symbolic AI, DPS uses multiple co-operating minds to solve one problem. We can currently imple

ment this on the WWM using a top-level MindM server to collate multiple Mind servers’ results to solve a

problem. There is scope, though, for expanding the list of server queries to more efficiently implement

some of the DPS models, such as blackboard architectures and contract nets.

2. Apply the model to more than just behaviour. Can we share / use / partially-override other people’s repre

sentations? There may be applications to distributed memory across the network [Porter et al.], or

symbol-grounding using multiple representations. Note that we can already implement something like this

with the current system, where the same input goes to multiple Mind servers, each of which may form its

own representations. Taking this further might involve a representation spread over multiple servers, or

servers passing representations to each other.

3. Servers might send signals to each other that are slightly independent of the current state. For example, a

flow of emotions or hormones or excitation or inhibition flowing through the network [e.g. Maes, 1989,

Maes, 1989a]. Perhaps some of this could be done with the "Change mind strength" message above.

Or one could have servers constructing new plans and thoughts independent of the current state. Perhaps

"consciousness" servers constructing a flow of narratives through the network.

4. Can we combine high-bandwidth (symbolic) and low-bandwidth (numeric) servers in networks?

5. Minds talking to Minds. - As discussed, we may have a mind server talking to another mind server as its

"world". In this case we could have "real" societies of individuals instead of just societies of mind. This

may relate to experiments in autonomous language formation [Steels and Kaplan, 1999], transmission of

memes [Dawkins, 1976], and so on. In fact, the first test of this system will probably be in the domain of

language evolution [Walshe, 2001].

13 Conclusion

There are two issues here - first, that we need a system of decentralised network AI minds, and second a

proposed protocol for it. Even if the protocol here is not adopted, the first part of this paper (the need to decen

tralise AI) stands on its own.

13.1 Endnote - Showing the world what a mind looks like

If the WWM scheme becomes successful, much of the user population of the Internet will gradually become

familiar with minds made up of hundreds or even thousands of distributed components; minds that have little

identifiable headquarters, but are made up of a crowded collection of sub-minds, duplicating, competing, over

lapping, communicating and learning, with "alternative strategies constantly bubbling up, seeking attention,

wanting to be given control of the body" [PhD, §18.3].

Such models may be long familiar (at least in theory) to AI researchers, but they are not much understood

outside of AI. As a result, outside of AI, people still tend to judge statements such as "The mind is a machine"

by the standards of machines they are familiar with, such as, say, Microsoft Word. The WWM scheme may help

large numbers of people expand their imagination to think about what a mind could be.

14 Acknowledgements

Thanks to my brother Richard for encouraging me to pursue this project.

Thanks to Dave O’Connor, Ciaran O’Leary, Amanda Marsh, David Sinclair and Ray Walshe for important

contributions and discussions.

Thanks to Elizabeth, Thomas and James for putting up with my absences.

References

Aylett, Ruth (1995), Multi-Agent Planning: Modelling Execution Agents, Papers of the 14th Workshop of the

UK Planning and Scheduling Special Interest Group.

Axelrod, Robert and Hamilton, William (1981), The evolution of cooperation, Science 211(4489):1390-6.

Axelrod, Robert (1984), The evolution of cooperation.

Baum, Eric B. (1996), Toward a Model of Mind as a Laissez-Faire Economy of Idiots, Proceedings of the Thir

teenth International Conference on Machine Learning.

Blumberg, Bruce (1994), Action-Selection in Hamsterdam: Lessons from Ethology, Proceedings of the Third

International Conference on Simulation of Adaptive Behavior (SAB-94).

Bosak, Jon and Bray, Tim (1999), XML and the Second-Generation Web, Scientific American, May 1999.

Brooks, Rodney A. (1986), A robust layered control system for a mobile robot, IEEE Journal of Robotics and

Automation 2:14-23.

Brooks, Rodney A. (1991), Intelligence without Representation, Artificial Intelligence 47:139-160.

Brooks, Rodney A. (1997), From Earwigs to Humans, Robotics and Autonomous Systems, Vol. 20, Nos. 2-4,

June 1997, pp. 291-304.

Brooks, Rodney A.; Breazeal, Cynthia; Marjanovic, Matthew; Scassellati, Brian and Williamson, Matthew M.

(1998), The Cog Project: Building a Humanoid Robot, Computation for Metaphors, Analogy and Agents, Vol.

1562 of Springer Lecture Notes in Artificial Intelligence, Springer-Verlag, 1998.

Brooks, Michael (2000), Global Brain, New Scientist, 24th June 2000.

Bryson, Joanna (2000), Cross-Paradigm Analysis of Autonomous Agent Architecture, Journal of Experimental

and Theoretical Artificial Intelligence (JETAI) 12(2):165-89.

Bryson, Joanna (2000a), Hierarchy and Sequence vs. Full Parallelism in Reactive Action Selection Architec

tures, Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior (SAB-00).

Bryson, Joanna; Lowe, Will and Stein, Lynn Andrea (2000), Hypothesis Testing for Complex Agents, Proceed

ings of the NIST Workshop on Performance Metrics for Intelligent Systems.

Clocksin, William F. and Moore, Andrew W. (1989), Experiments in Adaptive State-Space Robotics, Proceed

ings of the 7th Conference of the Society for Artificial Intelligence and Simulation of Behaviour (AISB-89).

Daniels, Marcus (1999), Integrating Simulation Technologies With Swarm, Proceedings of the Workshop on

Agent Simulation: Applications, Models, and Tools, University of Chicago, Oct 1999.

Darwin, Charles (1859), The Origin of Species.

Dawkins, Richard (1976), The Selfish Gene.

Diamond, Jared (1997), Guns, Germs and Steel: The Fates of Human Societies, Jonathan Cape, London.

Digney, Bruce L. (1996), Emergent Hierarchical Control Structures: Learning Reactive/Hierarchical Relation

ships in Reinforcement Environments, Proceedings of the Fourth International Conference on Simulation of

Adaptive Behavior (SAB-96).

Ginsberg, Matthew L. (1991), Knowledge Interchange Format: The KIF of Death, AI Magazine, Vol.5, No.63,

1991.

http://www.sciam.com/1999/0599issue/0599bosak.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/publications.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/cog/publications.html
http://www.newscientist.com/nsplus/insight/ai/globalbrain.html
http://www.ai.mit.edu/people/joanna/publications.html
http://www.ai.mit.edu/people/joanna/publications.html
http://www.ai.mit.edu/people/joanna/publications.html
http://www.ai.mit.edu/people/joanna/publications.html
http://www.swarm.org/intro-papers.html
http://www.cas.anl.gov/1999cas/
http://www.cas.anl.gov/1999cas/
ftp://ftp.cirl.uoregon.edu/pub/users/ginsberg/papers/

Goertzel, Ben (1996), The WorldWideBrain: Using the WorldWideWeb to Implement Globally Distributed

Cognition, goertzel.org/papers/wwb.html

Goldberg, Ken; Santarromana, Joseph; Bekey, George; Gentner, Steven; Morris, Rosemary; Sutter, Carl and

Wiegley, Jeff (1996), A Tele-Robotic Garden on the World Wide Web, SPIE Robotics and Machine Perception

Newsletter, 5(1), March 1996.

Goldberg, Ken; Chen, Billy; Solomon, Rory; Bui, Steve; Farzin, Bobak; Heitler, Jacob; Poon, Derek and Smith,

Gordon (2000), Collaborative Teleoperation via the Internet, IEEE International Conference on Robotics and

Automation (ICRA-00).

Grefenstette, John J. (1992), The Evolution of Strategies for Multi-agent Environments, Adaptive Behavior

1:65-89.

Harvey, Inman; Husbands, Philip and Cliff, Dave (1992), Issues in Evolutionary Robotics, Proceedings of the

Second International Conference on Simulation of Adaptive Behavior (SAB-92).

Heylighen, Francis (1997), Towards a Global Brain: Integrating Individuals into the World-Wide Electronic

Network, published in German in Brandes and Neumann, eds., Der Sinn der Sinne (Steidl Verlag, Gottingen),

but available in English at: pespmc1.vub.ac.be/papers/GBrain-Bonn.html

Holland, John H. (1986), Escaping Brittleness: The possibilities of General-Purpose Learning Algorithms

applied to Parallel Rule-Based Systems, in Michalski et al., eds., Machine Learning: an Artificial Intelligence

approach, Vol.2.

Humphrys, Mark (1989), The MGonz program, www.compapp.dcu.ie/~humphrys/eliza.html

Humphrys, Mark (1991), The Objective evidence: A real-life comparison of Procedural and Object-Oriented

Programming, technical report, IBM Ireland Information Services Ltd.

Humphrys, Mark (1997), Action Selection methods using Reinforcement Learning, PhD thesis, University of

Cambridge, Computer Laboratory (Technical Report no.426), www.compapp.dcu.ie/~humphrys/PhD

Humphrys, Mark (1997a), AI is possible .. but AI won’t happen: The future of Artificial Intelligence, the "Next

Generation" symposium, the "Science and the Human Dimension" series, Jesus College, Cambridge, Aug 1997.

Humphrys, Mark (1999), Why on earth would I link to you?, The Irish Times, 15th Feb 1999.

Hutchens, Jason (undated), How MegaHAL works, amristar.com.au/~hutch/megahal/How.html

Kaelbling, Leslie Pack (1993), Hierarchical Learning in Stochastic Domains, Proceedings of the Tenth Interna

tional Conference on Machine Learning.

Kaelbling, Leslie Pack; Littman, Michael L. and Moore, Andrew W. (1996), Reinforcement Learning: A

Survey, Journal of Artificial Intelligence Research 4:237-285.

Karlsson, Jonas (1997), Learning to Solve Multiple Goals, PhD thesis, University of Rochester, Department of

Computer Science.

Lawrence, Steve; Giles, C. Lee and Bollacker, Kurt (1999), Digital Libraries and Autonomous Citation Index

ing, IEEE Computer, 32(6):67-71.

Lin, Long-Ji (1993), Scaling up Reinforcement Learning for robot control, Proceedings of the Tenth Interna

tional Conference on Machine Learning.

Maes, Pattie (1989), How To Do the Right Thing, Connection Science 1:291-323.

Maes, Pattie (1989a), The dynamics of action selection, Proceedings of the 11th International Joint Conference

on Artificial Intelligence (IJCAI-89).

http://goertzel.org/papers/wwb.html
http://telegarden.aec.at/html/spie.html
http://www.ieor.berkeley.edu/~goldberg/pubs/
http://pespmc1.vub.ac.be/papers/GBrain-Bonn.html
http://amristar.com.au/~hutch/megahal/How.html
http://www.neci.nj.nec.com/~lawrence/papers/aci-computer98/
http://www.neci.nj.nec.com/~lawrence/papers/aci-computer98/

Martin, Francisco J.; Plaza, Enric and Rodriguez-Aguilar, Juan A. (2000), An Infrastructure for Agent-Based

Systems: an Interagent Approach, International Journal of Intelligent Systems 15(3):217-240.

McCallum, Andrew; Nigam, Kamal; Rennie, Jason and Seymore, Kristie (2000), Automating the Contruction of

Internet Portals with Machine Learning, Information Retrieval Journal 3:127-163.

McFarland, David (1989), Problems of Animal Behaviour.

Minsky, Marvin (1986), The Society of Mind.

Minsky, Marvin (1991), Society of Mind: a response to four reviews, Artificial Intelligence 48:371-96.

Minsky, Marvin (1996), How Computer Science Will Change Our Lives, plenary talk, Artificial Life V.

Moore, Andrew W. (1990), Efficient Memory-based Learning for Robot Control, PhD thesis, University of

Cambridge, Computer Laboratory.

Nilsson, Nils J. (1995), Eye on the Prize, AI Magazine 16(2):9-17, Summer 1995.

Noda, Itsuki; Matsubara, Hitoshi; Hiraki, Kazuo and Frank, Ian (1998), Soccer Server: A Tool for Research on

Multiagent Systems, Applied Artificial Intelligence 12:233-50.

Numao, Masayuki (2000), Long-term learning in Global Intelligence, 17th Workshop on Machine Intelligence

(MI-17), Bury St Edmunds, Suffolk.

Nwana, Hyacinth S. (1996), Software agents: an overview, Knowledge Engineering Review, 11(3).

Ono, Norihiko; Fukumoto, Kenji and Ikeda, Osamu (1996), Collective Behavior by Modular Reinforce

ment-Learning Animats, Proceedings of the Fourth International Conference on Simulation of Adaptive Behav

ior (SAB-96).

Paulos, Eric and Canny, John (1996), Delivering Real Reality to the World Wide Web via Telerobotics, IEEE

International Conference on Robotics and Automation (ICRA-96).

Pell, Barney (1993), Strategy Generation and Evaluation for Meta-Game Playing, PhD thesis, University of

Cambridge, Computer Laboratory.

[PhD] is shorthand for [Humphrys, 1997].

Pollack, Jordan B. (1989), No Harm Intended: A Review of the "Perceptrons" expanded edition, Journal of

Mathematical Psychology, 33(3):358-65.

Porter, Brad; Rangaswamy, Sudeep and Shalabi, Sami (undated), Collaborative Intelligence - Agents over the

Internet, Undergraduate final year project, MIT Laboratory of Computer Science.

Ray, Thomas S. (1995), A proposal to create a network-wide biodiversity reserve for digital organisms, Techni

cal Report TR-H-133, ATR Human Information Processing Research Laboratories, Japan.

Ring, Mark (1992), Two Methods for Hierarchy Learning in Reinforcement Environments, Proceedings of the

Second International Conference on Simulation of Adaptive Behavior (SAB-92).

Rosenblatt, Julio K. (1995), DAMN: A Distributed Architecture for Mobile Navigation, Proceedings of the

1995 AAAI Spring Symposium on Lessons Learned from Implemented Software Architectures for Physical

Agents.

Rosenblatt, Julio K. and Thorpe, Charles E. (1995), Combining Multiple Goals in a Behavior-Based Architec

ture, Proceedings of the 1995 International Conference on Intelligent Robots and Systems (IROS-95).

Russell, Peter (2000), The Global Brain Awakens, Element Books.

http://www.iiia.csic.es/People/enric/papers.html
http://www.iiia.csic.es/People/enric/papers.html
http://cora.whizbang.com/about.html
http://cora.whizbang.com/about.html
http://robotics.stanford.edu/~nilsson/
http://ci.etl.go.jp/~noda/papers.html
http://ci.etl.go.jp/~noda/papers.html
http://www.nm.cs.titech.ac.jp/lab/papers/index-e.html
http://www.labs.bt.com/projects/agents/publish/papers.htm
http://www.prop.org/papers/
http://www.ftp.cl.cam.ac.uk/ftp/papers/reports/
http://www.cs.brandeis.edu/~pollack/publications.html
http://www.hip.atr.co.jp/
http://www.peterussell.com/GB/globalbrain.html

Simmons, Reid G.; Goodwin, Richard; Haigh, Karen Zita; Koenig, Sven; O’Sullivan, Joseph and Veloso,

Manuela M. (1997), Xavier: Experience with a Layered Robot Architecture, ACM SIGART Intelligence maga

zine.

Sims, Karl (1994), Evolving 3D Morphology and Behavior by Competition, Artificial Life IV Proceedings.

Singh, Satinder P. (1992), Transfer of Learning by Composing Solutions of Elemental Sequential Tasks,

Machine Learning 8:323-339.

Sloman, Aaron and Logan, Brian (1999), Building cognitively rich agents using the SIM_AGENT toolkit,

Communications of the ACM, 43(2):71-7, March 1999.

Spolsky, Joel (2000), "Things You Should Never Do, Part I", Joel on Software, joel.editthispage.com

Steels, Luc and Kaplan, Frederic (1999), Bootstrapping Grounded Word Semantics, in Briscoe, Ted, ed.,

Linguistic evolution through language acquisition: formal and computational models, Cambridge University

Press.

Steels, Luc (2000), The Emergence of Grammar in Communicating Autonomous Robotic Agents, Proceedings

of ECAI 2000.

Stein, Matthew R. (1998), Painting on the World Wide Web: The PumaPaint Project, IEEE / RSJ International

Conference on Intelligent Robotic Systems (IROS-98).

Stone, Peter and Veloso, Manuela (2000), Multiagent Systems: A Survey from a Machine Learning Perspective,

Autonomous Robots, 8(3), July 2000.

Sutton, Richard S. and Santamaria, Juan Carlos (undated), A Standard Interface for Reinforcement Learning

Software, www-anw.cs.umass.edu/~rich/RLinterface/RLinterface.html

Taylor, Ken and Dalton, Barney (1997), Issues in Internet Telerobotics, International Conference on Field and

Service Robotics (FSR-97).

Tham, Chen K. and Prager, Richard W. (1994), A modular Q-learning architecture for manipulator task decom

position, Proceedings of the Eleventh International Conference on Machine Learning.

Tyrrell, Toby (1993), Computational Mechanisms for Action Selection, PhD thesis, University of Edinburgh,

Centre for Cognitive Science.

Walshe, Ray (2001), The Origin of the Speeches: language evolution through collaborative reinforcement learn

ing, submitted to the 6th European Conference on Artificial Life (ECAL-01).

Watkins, Christopher J.C.H. (1989), Learning from delayed rewards, PhD thesis, University of Cambridge,

Psychology Department.

Weizenbaum, Joseph (1966), ELIZA - A computer program for the study of natural language communication

between man and machine, Communications of the ACM 9:36-45.

Whitehead, Steven; Karlsson, Jonas and Tenenberg, Josh (1993), Learning Multiple Goal Behavior via Task

Decomposition and Dynamic Policy Merging, in Connell and Mahadevan, eds., Robot Learning, Kluwer

Academic Publishers.

Wilson, Stewart W. (1990), The animat path to AI, Proceedings of the First International Conference on Simu

lation of Adaptive Behavior (SAB-90).

Wixson, Lambert E. (1991), Scaling reinforcement learning techniques via modularity, Proceedings of the

Eighth International Conference on Machine Learning.

http://www.cs.cmu.edu/~Xavier/papers.html
http://www.genarts.com/karl/evolved-virtual-creatures.html
http://www.cs.bham.ac.uk/~axs/cog_affect/sim_agent.html
http://joel.editthispage.com/
http://talking-heads.csl.sony.fr/Documents/Articles/
http://arti.vub.ac.be/steels/
http://www.csl.sony.fr/General/People/StaffPage.php3?user
http://yugo.mme.wilkes.edu/~villanov/
http://www.research.att.com/~pstone/papers.html
http://www.cs.cmu.edu/~mmv/
http://www.cs.cmu.edu/~mmv/produce-bib00.html
http://www-anw.cs.umass.edu/~rich/RLinterface/RLinterface.html
http://telerobot.mech.uwa.edu.au/ROBOT/anupaper.htm
http://i5.nyu.edu/~mm64/x52.9265/january1966.html
http://i5.nyu.edu/~mm64/x52.9265/january1966.html

Yahoo list of AI programs online, yahoo.com/Recreation/Games/Computer_Games/Inter

net_Games/Web_Games/Artificial_Intelligence

Yahoo list of ALife programs online, yahoo.com/Science/Artificial_Life/Online_Examples

Yahoo list of robots online, yahoo.com/Computers_and_Internet/Internet/Devices_Connected_to_the_Inter

net/Robots

http://uk.dir.yahoo.com/Recreation/Games/Computer_Games/Internet_Games/Web_Games/Artificial_Intelligence/
http://uk.dir.yahoo.com/Recreation/Games/Computer_Games/Internet_Games/Web_Games/Artificial_Intelligence/
http://uk.dir.yahoo.com/Science/Artificial_Life/Online_Examples/
http://uk.dir.yahoo.com/Computers_and_Internet/Internet/Devices_Connected_to_the_Internet/Robots/
http://uk.dir.yahoo.com/Computers_and_Internet/Internet/Devices_Connected_to_the_Internet/Robots/

	1€€Introduction
	1.1€€AI is too big a problem
	1.2€€Duplication of Effort
	1.3€€Unused agents and worlds
	1.4€€Minds will be too complex to be fully understood

	2€€The World-Wide-Mind
	2.1€€Types of servers
	2.2€€Types of Societies
	2.3€€Types of users
	2.4€€Using other people's agent worlds
	2.4.1€€No user interface

	2.5€€Using other people's agent minds

	3€€Further issues on agent minds
	3.1€€MindAS server queries the Mind servers †not Client‡
	3.2€€Client talks to the World †not Mind server‡
	3.3€€Low-bandwidth communication
	3.4€€Numeric communication - Q-values and W-values
	3.5€€The role of MindM servers
	3.6€€What is the definition of state and action?

	4€€Further issues on agent worlds
	4.1€€Why not separate World and Body servers?
	4.1.1€€Changing the Body for the World
	4.1.2€€Multiple Bodies in the same World
	4.1.3€€The joint World-Body model is no restriction

	4.2€€What if the Mind cannot make sense of the World?
	4.3€€Real robots
	4.4€€Time
	4.5€€The name "The World-Wide-Mind"

	5€€How the WWM will be used in AI
	5.1€€Dividing up the work in AI
	5.2€€Making AI Science - 3rd party experimentation
	5.3€€Artificial Selection
	5.4€€How 3rd party AI researchers will use the scheme
	5.5€€Bring every agent online

	6€€Objections to the model
	7€€Miscellaneous issues
	7.1€€Hidden server insides
	7.2€€Credit
	7.3€€Learning servers
	7.3.1€€Learning Temperature
	7.3.2€€Q-Temperature and W-Temperature

	8€€Implementation
	8.1€€Short, limited-length, client-server transactions
	8.2€€Client algorithm
	8.2.1€€The server may be involved in many runs
	8.2.2€€The client controls time and may implement time-outs
	8.2.3€€This is not a stimulus-response model

	8.3€€MindAS server algorithm
	8.3.1€€The MindAS server may also implement time-outs

	8.4€€The servers †and client software‡ may implement any general-purpose algorithm using the server queries

	9€€List of server queries
	9.1€€World server
	9.2€€Mind server
	9.2.1€€Additional MindL queries
	9.2.2€€Additional Mindi queries
	9.2.3€€Additional MindFeu queries
	9.2.4€€Additional MindAS queries

	10€€How to implement some existing agent architectures as networks of WWM servers
	10.1€€Hand-coded program
	10.1.1€€Initial test - Eliza Mind talks to Eliza World

	10.2€€The Subsumption Architecture
	10.3€€Serial models
	10.3.1€€Maes' Spreading Activation Networks

	10.4€€Reinforcement Learning
	10.5€€Hierarchical Q-Learning
	10.6€€Action Selection with a single query or multiple queries
	10.7€€Static measures of W
	10.8€€Dynamic measures of W
	10.9€€W-learning
	10.10€€Strong and Weak Mind servers
	10.11€€Matching World state definition with Mind state definition
	10.11.1€€"Islands" of compatible worlds
	10.11.2€€The "island" of the physical world
	10.11.3€€Mind servers with different senses in the same Society

	10.12€€Global Action Selection decisions
	10.13€€Other Action Selection methods based on RL
	10.14€€Other parallel models
	10.15€€The AS server remembering the winner
	10.16€€Dynamically changing collections
	10.17€€Nested Mind servers
	10.17.1€€Each server calling a different list of servers
	10.17.2€€Servers outside the AS loop

	10.18€€Feudal Mind servers
	10.19€€The sub-symbolic Society of Mind
	10.20€€More complex communication between Mind servers
	10.21€€Is this a sub-symbolic model?

	11€€HTTP CGI using XML
	11.1€€HTTP CGI
	11.2€€XML
	11.2.1€€XML encoding of server queries
	11.2.2€€"AIML"

	11.3€€Addressing
	11.4€€Persistent CGI
	11.5€€Asynchronous worlds

	12€€Future work
	12.1€€Define the server queries
	12.2€€Define the client user view
	12.2.1€€Client use through existing Web browsers
	12.2.2€€Dedicated client software

	12.3€€Testing
	12.4€€Long-term prospects

	13€€Conclusion
	13.1€€Endnote - Showing the world what a mind looks like

	14€€Acknowledgements

