
Bayesian Imitation of Human Behavior in Interactive Computer Games

Bernard Gorman1, Christian Thurau2, Christian Bauckhage3 and Mark Humphrys1

1Dublin City University
bgorman@computing.dcu.ie

2Bielefeld University
cthurau@techfak.uni-bielefeld.de

3Deutsche Telekom Laboratories
christian.bauckhage@telekom.de

Abstract

Modern interactive computer games provide the ability
to objectively record complex human behavior, offering a
variety of interesting challenges to the pattern-recognition
community. Such recordings often represent a multiplex-
ing of long-term strategy, mid-term tactics and short-term
reactions, in addition to the more low-level details of the
player’s movements. In this paper, we describe our work in
the field of imitation learning; more specifically, we present
a mature, Bayesian-based approach to the extraction of
both the strategic behavior and movement patterns of a hu-
man player, and their use in realizing a cloned artificial
agent. We then describe a set of experiments demonstrat-
ing the effectiveness of our model.

1 Motivation and Related Work

Interactive computer games, with their increasingly
complex virtual worlds and ability to record the actions
of humans within them, present interesting opportunities
to the pattern-recognition community [7]. So far, the AI
systems employed in computer games have typically es-
chewed pattern-recognition and machine learning, favoring
outmoded finite-state machines and graph-searching algo-
rithms [3, 8]. The idea of imitation learning –already promi-
nent in robotics [10]– has received scant attention, despite
its obvious suitability; substantial libraries of samples are
available online, new samples can be generated in large
quantities and with ease, and these samples encode nothing
less than the output of competitive human reasoning tasks.
The objective of imitation learning in computer games,
then, is to deduce the patterns within these recorded game-
play sessions, and ’reverse-engineer’ the player’s decision-
making process from its observed results.

Several investigations [6, 14] have identified long-term
planning as particularly crucial in determining the degree
to which an agent is perceived as ’humanlike’. In order to
learn long-term strategic behaviors from human demonstra-
tion, we develop a model designed to emulate the notion of

program level imitation [2] – that is, to identify the demon-
strator’s intent, rather than simply reproducing his actions.
Because modern games typically require players to simulta-
neously engage in a variety of short, medium and long-term
tasks, this requires an approach capable of recognizing and
filtering the goal-oriented behavior patterns from the game-
play sample, discarding contemporaneous actions which do
not contribute towards reaching the strategic objectives.

In the course of a game session, human players also ex-
hibit actions other than simply moving along the environ-
ment surface, including jumps, weapon changes and dis-
charges, crouches, etc. Often, players can only attain cer-
tain goals by performing one or more such actions; they
therefore have an important functional element. Concern-
ing the believability of agents, it is also vital to reproduce
the aesthetic qualities of these actions - it is the characteris-
tic smoothness of human motion, as contrasted against the
robotic movement of traditional artificial agents, that distin-
guishes live players from AI. For the purposes of our agent,
then, a means of imitating such actions is essential.

The first-person shooter (FPS) genre, where players ex-
plore 3D environments littered with weapons, bonus items,
traps and pitfalls, and defeat as many opponents as possi-
ble, was chosen for our work because it provides a relatively
direct mapping of human decisions onto agent actions. In
other genres such as sports or strategy games, significant
swathes of gameplay are dictated by the software’s built-in
AI; in FPS games, by contrast, the player assesses and re-
sponds to his situation, and his decisions are translated into
observable in-game actions. Due to its prominence [6, 7],
we use iD Software’s QUAKE II R© as our testbed. In order
to extract the required data from its recorded DM2 or demo
file format –consisting of the network traffic received dur-
ing the game – and to realize the in-game agents, we employ
our own API [1].

In previous work, Thurau et al. [11] proposed a hier-
archical representation of the differing behaviors encoded
in QUAKE II R© demos ranging from long-term strategies to
short-term reactions, and outlined an approach to movement
imitation based on the theory of action primitives [12]. Gor-
man and Humphrys [5] subsequently introduced a method

Figure 1. Q2 environment. The player strate-
gically cycles the 3D map, collecting items to
maximize his advantage. The avatar’s move-
ment direction is independent of his viewing
angle, giving rise to the characteristically hu-
man smoothness of the movement path.

of reproducing the strategic navigational behaviors of a hu-
man player, and described initial attempts to integrate this
with the action primitives framework. Simultaneoulsy, Thu-
rau et al. [13] extended their framework using a Bayesian
model of imitation in infants developed by Rao et al. [9].

In this paper, we propose an integration of both these
models to create a unified imitation mechanism and present
experiments which demonstrate its efficacy.

2 Learning Strategic Patterns

In QUAKE II R© , experienced players traverse the envi-
ronment methodically, controlling important areas and col-
lecting items to strengthen their character. We therefore de-
fine the player’s strategic goals to be the items scattered at
fixed points around each level. By learning the mappings
between the player’s status and his subsequent item pick-
ups, the agent can adopt observed strategies when appropri-
ate, and adapt to situations which the player did not face.

We read the set of player locations ~l = [x, y, z] from the
recording, and cluster them to produce a reduced set of typ-
ical positions (nodes). We also construct a matrix of edges
E, where Eij = 1 if the player was observed to move from
node i to node j. This topological map of the environment
can now be viewed as a Markov Decision Process, with the
nodes corresponding to states and the edges to transitions.

The player’s inventory –the list of what quantities of
which items he currently possesses– is also read at each
timestep. The inventory vectors represent varying situations
faced by the player during the game. We can now construct

a set of paths which the player followed through the envi-
ronment while in each inventory state. These paths consist
of a series {ci,1, ci,2, . . . , ci,k} of transitions between clus-
ters where ci,j is a single node along a sequence. Each path
begins at the point where the player enters a given state, and
ends where he exits that state. In other words, collecting an
item causes the player’s inventory to shift towards a differ-
ent prototype.

Having obtained the different paths pursued by the
player in response to his changing condition, we turn to re-
inforcement learning to learn his behavior.

A modified version of the value iteration algorithm is
employed to compute the utility values for every node under
each inventory state prototype. We consider an action a to
be the choice to move to a given node from the current posi-
tion, and assign rewards such that the agent is guided along
the same paths as the human. The transition probabilities
and rewards are therefore given as

P (c′ = j|c = i, a = j) = Eij and R(pi, ci,j) = j (1)

That is, each successive node along the path’s length re-
ceives a reward greater than the last, until the last cluster (at
which an inventory state change occurred) is assigned the
highest reward. If a path loops back or crosses over itself,
the higher values will overwrite the previous rewards, ensur-
ing that the agent will be guided towards the terminal node
while filtering out any non-goal-oriented diversions. Thus,
the agent will emulate the player’s program-level behavior,
instead of simply duplicating his movements.

In situations where several items are of strategic benefit,
the player will intuitively weigh their relative importance
before deciding on his next move. To model this, we adopt
a fuzzy clustering approach, expressing the agent’s current
inventory as a membership distribution across all prototype
inventory states. Another important factor is the human’s
understanding of object transience: a collected item will be
unavailable until the game regenerates it after a fixed inter-
val. To capture this, we introduce an activation variable in
the computation of the membership values:

mp(~s) =
a(op)d−1(~s, ~p)∑

a(oi)d−1(~s,~i)
(2)

where ~s is the current inventory state, ~p is a prototype in-
ventory state, a = 1 if the object o at the terminal node
of the path associated with the given prototype is present
and a = 0 otherwise, and d−1 is a proximity function.
This implicitly defines the agent’s current goals, which (as
will be shown later) facilitates integration with the Bayesian
motion-modeling system. The utility configurations associ-
ated with each prototype are then weighted according to the
membership distribution, and the adjusted configurations
superimposed; we also apply an online discount to prevent

backtracking. The final utilities are thus computed as

U(c) = γe(c)
∑

Vp(c)mp(~s) (3)

ct+1 = max
y

U(y), y ∈ {x|Ec,x = 1}

where U(c) is the final utility of node c, γ is the discount,
e(c) is the number of times the player has entered cluster c
since the last state transition, and Vp(c) is the original value
of node c in state prototype p.

3 Bayesian Action Primitives

It is not sufficient to simply identify the player’s goals
and how (s)he reached them; it is also necessary to cap-
ture the actions executed in pursuit of these goals. In [13],
Thurau et al. describe an approach based on Rao’s Bayesian
inverse-model for action selection in infants and robots [9].
The choice of action at each timestep is expressed as a prob-
ability function of the subject’s current state ct, next state
ct+1 and goal state cg , as follows

P (at|ct, ct+1, cg) =
P (ct+1|ct, at)P (at|ct, cg)∑
u P (ct+1|ct, au)P (au|ct, cg)

(4)

This model fits into the strategic navigation system almost
perfectly; the states (position clusters) ct and ct+1 are cho-
sen according to utility values, while the current goal is
given by the membership distribution. To derive the prob-
abilities, we read the actions taken by the player as a se-
quence of vectors

~v = [∆yaw,∆pitch, jump, weapon, firing]

Similar to [4], clustering these action vectors yields a set
of action primitives, each of which amalgamates a number
of similar actions into a single unit of behavior. The priors
can now be derived by direct examination of the observation
data.

Several important adaptations must be made in order to
use this model in the game environment. Firstly, Rao’s
model assumes instantaneous transitions between states,
whereas in QUAKE II R© , multiple actions may be per-
formed while moving between successive clusters. We
therefore express P (ct+1 = cj |ct = ci, at = ai) as a soft-
distribution of all observed actions on edge Ect,ct+1 . Sec-
ondly, Rao assumes a single unambiguous goal, whereas
we deal with multiple weighted goals in parallel. We thus
perform a similar weighting of the probabilities across all
active goal clusters. Finally, Rao’s model assumes that each
action is independent of the previous one. In QUAKE II R© ,
however, an action is constrained by that of preceding
timestep. We therefore introduce an additional dependency

Cluster density 20% 30% 50%
Position MAE (Units) 21.32 19.22 17.76
Position MAPE (%) 2.69 2.42 2.32
Yaw RMSE (◦) 4.78 3.84 2.71
Pitch RMSE (◦) 0.30 0.17 0.11

Table 1. Variation of mean error with density

in our calculations such that the final probabilities are∑
g

mgP (at|ct, ct+1, cg)
P (at|at−1)∑
u P (au|at−1)

4 Experiments and Discussion

To test the model, we utilized 35 gameplay samples of
varying length and complexity, spread across three distinct
environments. In each case, the agent attempted to repro-
duce the human’s behavior with cluster densities of 20%,
30% and 50% of the total number of samples, both for con-
structing the topological map and for deriving the action
primitives. Because the agent’s task was not to simply copy
the human, but rather to deduce his objectives and pursue
them independently, a frame-by-frame comparison of the
artificial player’s actions against the demonstrator’s is not
appropriate. Instead, we compute the error between the
agent’s actions while traversing each edge and those taken
by the human on the same edge while in the same goal state.
See Table 1 for average error rates with varying cluster den-
sities.

As can be seen in the charts below, the model resulted in
a highly accurate derivation of the human player’s behavior
patterns. The MAP error between the agent’s position and
that of the human did not exceed 7.5%, and was generally
much lower; the highest recorded RMS error in the agent’s
yaw was ≈ 10◦ at the lowest density, while its pitch stayed
within 1.36◦ of the observed target. This low pitch error
reflects the fact that the agent was engaged in imitating the
player’s strategic navigational behaviors. Variations in the
horizontal plane were therefore greater (moving around cor-
ners, etc.) than those in its vertical, which would be more
pronounced in a combat scenario. The numerical results
correlated with the very humanlike visual in-game appear-
ance of the imitation agents.

While the choice of cluster numbers revealed itself to
be dependent upon the complexity of the environment and
the size of the gameplay sample, the charts demonstrate a
trend towards greater accuracy with more clusters (see Ta-
ble 1). In certain cases, however, this did not hold true. We
found this to be caused by the overcrowding of the topo-
logical map with waypoint nodes, which forced the agent to
make more course corrections than were necessary for accu-

Figure 2. Average Yaw/Pitch RMSE for selected samples

Position Yaw PitchSample
MAPE % RMSE (◦) RMSE (◦)

1 0.71 1.52 0.10
5 0.91 0.20 0.16
10 0.98 1.63 0.03
15 2.88 2.29 0.07
20 2.23 7.23 0.09
25 3.21 4.85 0.09
30 5.83 2.06 0.13
35 2.11 0.71 0.09

Table 2. Error rates for 50% cluster density

rate reproduction of the player’s navigation. This, in turn,
often had a negative impact on the accuracy of the action
primitives. Higher topological densities are also undesir-
able from a technical point of view, since they increase the
duration of the learning process. Given the relatively small
benefits of increasing the topological density versus the sig-
nificant benefits of increasing the number of primitives (Ta-
ble 1), a useful guideline is to use the minimum number of
nodes required to yield a sufficiently detailed representation
of the environment, while maximizing the action primitives
according to any relevant resource considerations. In gen-
eral, we found that cluster densities of less than 20% were
not sufficient to capture the topology of the environment,
while densities of greater than 50% often resulted in a de-
crease in performance, both numerically and perceptually.

5 Conclusion

In this paper, we proposed modern computer games as
an ideal domain for pattern recognition research, given the
quantity of available samples, the complexity of the data
they contain, and the ease of generating new samples. We
then presented a reinforcement-learning approach to deriv-
ing the strategic behaviour patterns of a human player from
a recorded game session, and described how we combined
this with a Bayesian framework for imitating the player’s
individual actions. Tests of agents trained using the unified
model showed it to be extremely effective in learning and
reproducing the goal-driven behaviour of the demonstrator,

while conveying the strong impression of being a human
rather than artificial player.

References

[1] C. Fairclough, M. Fagan, B. MacNamee, and P. Cunning-
ham. Research Directions for AI in Computer Games. Tech-
nical report, Trinity College Dublin, 2001.

[2] A. Fod, M. Matarić, and O. Jenkins. Automated deriva-
tion of primitives for movement classification. Autonomous
Robots, 12(1):39–54, 2002.

[3] B. Gorman, M. Fredriksson, and M. Humphrys. QASE – an
integrated api for imitation and general ai research in com-
mercial computer games. In Proc. CGAMES Int. Conf. Com-
puter Games, pages 207–214, 2005.

[4] B. Gorman and M. Humphrys. Towards integration of strate-
gic planning and motion modelling in interacctive cojmputer
games. In Proc. Int. Conf. Computer Game Design & Tech-
nology, pages 92–99, 2005.

[5] J. E. Laird. Using a Computer Game to develop advanced
AI. IEEE Computer, pages 70–75, July 2001.

[6] J. E. Laird and M. v. Lent. Interactice Computer Games:
Human-Level AI’s Killer Application. In Proc. AAAI, pages
1171–1178, 2000.

[7] A. Naraeyek. Computer games – boon or bane for ai re-
search. Künstliche Intelligenz, pages 43–44, February 2004.

[8] R. Rao, A. Shon, and A. Meltzoff. A Bayesian Model of Im-
itation in Infants and Robots. In K. Dautenhahn and C. Ne-
haniv, editors, Imitation and Social Learning in Robots, Hu-
mans, and Animals: Behavioural, Social and Communica-
tive Dimensions. Cambridge University Press,, 2004.

[9] S. Schaal. Is Imitation Learning the Route to Humanoid
Robots? Trends in Cognitive Sciences, 3(6):233–242, 1999.

[10] C. Thurau, C. Bauckhage, and G. Sagerer. Learning Human-
Like Movement Behavior for Computer Games. In Proc. Int.
Conf. on the Simulation of Adaptive Behavior, pages 315–
323. MIT Press, 2004.

[11] C. Thurau, C. Bauckhage, and G. Sagerer. Synthesiz-
ing Movements for Computer Game Characters. In Pat-
tern Recognition, volume 3175 of LNCS, pages 179–186.
Springer, 2004.

[12] C. Thurau, T. Paczian, and C. Bauckhage. Is Bayesian Imi-
tation Learning the Route to Believable Gamebots? In Proc.
GAME-ON North America, pages 3–9, 2005.

[13] S. Wallace and J. Laird. Behavior bounding: Toward effec-
tive comparisons of agents & humans. In Proc. IJCAI, pages
727–732, 2003.

