

THE QASE API: AN INTEGRATED PLATFORM FOR AI RESEARCH AND
EDUCATION THROUGH FIRST-PERSON COMPUTER GAMES

Bernard Gorman
Dublin City University
Glasnevin, Dublin 9

Rep. of Ireland
+353 1 4902714

bernard.gorman@computing.dcu.ie

Martin Fredriksson
Blekinge Institute of Technology

Ronneby
Sweden

+46 457 385825
martin.fredriksson@bth.se

Mark Humphrys
Dublin City University
Glasnevin, Dublin 9

Rep. of Ireland
+353 1 700 8059

mark.humphrys@computing.dcu.ie

KEYWORDS
Imitation, machine learning, artificial intelligence, API,
game bots, intelligent agents, education, Quake.

ABSTRACT

Computer games have belatedly come to the fore as a serious
platform for AI research. Through our own experiments in
the fields of imitation learning and intelligent agents, it
became clear that the lack of a unified, powerful yet intuitive
API was a serious impediment to the adoption of commercial
games in both research and education. Parallel to our own
specialised work, we therefore decided to develop a general-
purpose library for the creation of game agents, in the hope
that the availability of such software would help stimulate
further interest in the field. Though geared towards machine-
learning, the API would be flexible enough to facilitate
multiple forms of artificial intelligence, making it suitable
for application in research and in undergraduate courses
centring upon traditional AI and agent-based systems.

In this paper, we present the result of our efforts; the Quake
2 Agent Simulation Environment (QASE) API. We first
describe the theme of our work, the reasons for choosing
Quake 2 as our testbed, and the necessity for an API of this
nature. We then outline its most important features, before
comparing QASE against other game-based artificial
intelligence APIs. A presentation of some experiments from
our own research demonstrating QASE’s practical
capabilities closes this contribution.

INTRODUCTION

In recent years, commercial computer games have gained
increasing recognition as an ideal platform for research in
various fields of artificial intelligence (Laird & van Lent,
2000; Naraeyek 2004). The vast majority, however, still
utilize AI techniques that were developed several decades
ago, and which often produce mechanical, repetitive and
unsatisfying game agents. Given that games provide a
convenient means of recording the complex, fluent
behaviors of human players, some researchers (Sklar et al
1999; Bauckhage et al 2003; Thurau et al 2004) have
speculated that approaches based on the analysis and
imitation of human demonstrations may produce more
challenging and believable artificial agents than can be
realised using traditional techniques; indeed, imitation
learning is already employed quite extensively in the
robotics community (Atkeson & Schaal 1997, Schaal 1999,
Jenkins & Mataric 2000). Building upon this premise, the

primary focus of our work lies in investigating imitation
learning in games which involve cognitive agents.

In the initial stages of our research, however, it became clear
that the available testbeds and resources were often
scattered, frequently incomplete, and generally ad hoc.
Existing APIs were unintuitive, unreliable and lacking in
functionality. Network protocol and file format
specifications were usually unofficial, more often than not
the result of reverse-engineering by adventurous fans
(Girlich 2000). Documentation was sketchy, with even the
most rudimentary information spread across several disjoint
sources. Above all, it was evident that the absence of a
unified, low-level yet easy-to-use development platform and
experimental testbed was a major impediment to the
adoption of commercial games in both academic research
and education.

As a result, we decided to adopt a two-track approach. We
would develop approaches to imitation learning in games,
while simultaneously building a comprehensive
programming interface designed to provide all the
functionality necessary for others to engage in this work.
This interface should be powerful enough to facilitate high-
end research, while at the same time being suitable for use in
undergraduate courses geared towards classic AI and agent-
based systems.

Choosing a Testbed - Quake 2

Our first task was to decide which game to use as a testbed.
We opted to investigate the first-person shooter genre, in
which players control a single character exploring a three-
dimensional environment littered with weapons, bonus
items, traps and pitfalls, with the objective of defeating as
many opponents as possible within a predetermined time
limit. This particular genre was chosen in preference to
others due to the fact that it provides a comparatively direct
mapping of human decisions onto agent actions; this is in
contrast to many other game types, where the agent’s
behaviours are determined in large part by factors other than
the player’s decision-making process. In real-time strategy
games, for instance, the player typically controls a large
number of units, directing them in various scheduling and
resource management tasks; although the player is
responsible for, say, instructing his followers to engage in
battle against an enemy faction, the specifics of how the
confrontation unfolds is handled on a per-unit basis by the
game’s AI routines. In sports simulations, only a single
character is usually under the control of the human player -
the interactions of his teammates are managed from one

timestep to the next by the computer. In adventure games,
imitating human performance would first require an AI
capable of visually recognising everyday objects and
comprehending their significance, as well as an ability to
understand and partake in conversations with other
characters; this prerequisite level of common-sense
reasoning makes the genre infeasible for imitation purposes,
at least at present. While other genres do offer many
interesting challenges for AI research, as outlined by both
(Laird 2001) and (Fairclough et al 2001), the attraction of
first-person shooters - to researchers and gamers alike - lies
in the minimal degree of abstraction they impose between
the human player and his/her virtual avatar. The same
qualities make them ideal for use in undergraduate courses;
the student creates the AI for a single agent, which can then
be deployed against those written by others.

With this in mind, we chose ID Software’s Quake 2 as our
test environment - it was prominent in the literature, existing
resources were more substantial than for other games, and
thanks to Laird it had become the de facto standard for
research of this nature. While subsequent first-person
shooter games have boasted faster gameply and more
advanced visuals, the core features of the genre - those
elements which are of particular interest to AI researchers, as
outlined above - are as well-represented in Quake 2 as in its
descendants. Figure 1 shows a typical environment and
features.

THE QASE API

 The Quake 2 Agent Simulation Environment was created
to meet the requirements identified earlier; namely, it is a
fully-featured, integrated API, designed to be as intuitive,

modular and transparent as possible. It is Java-based,
ensuring an easily extensible object-oriented architecture
and allowing it to be deployed on different hardware
platforms and operating systems. It amalgamates and
improves upon the functionalities of several existing
applications, removing the need to rely on ad-hoc software
combinations or to comb through a multitude of different
documentations; QASE consolidates all relevant information
into a single source. It is geared towards machine and
imitation learning, but is equally appropriate for use with
more traditional forms of agent-based AI. Put simply, QASE
is intended to provide all the functionality the researcher or
student will require in their experiments with cognitive
agents in first-person games.

In the following sections we will outline the major
components of the QASE architecture, highlighting its
potential for application in both research and education.

Network Layer

Quake 2’s multi-player mode is a simple client-server model.
One player starts a server and other combatants connect to it,
entering whatever environment (known as a map) the
instigating player has selected. Every hundred milliseconds,
the server transmits an update frame to all connected clients,
containing information about the game world and the status
of each entity; each client merges the update into its existing
gamestate record, and then responds by sending its desired
movement, aiming and action data back to the server. Some
complexity is introduced due to the fact that the client and
server interpret positional and orientation data differently.
From the server’s perspective, the forward velocity
corresponds to velocity along the global x-axis, right
velocity is velocity along the global y-axis, and angular
measurements are absolute. From the client’s perspective,
the forward velocity is velocity in the direction the agent is
currently facing, the right velocity is perpendicular to this,
and the angular measurements are relative to the agent’s
local axes. Thus, in order to realize artificial agents (also
known as bots), a means of handling the game’s network
traffic and translating smoothly between global server data
and local client data is required.

QASE accomplishes this via its Proxy class, which
encapsulates an implementation of the Quake 2 client-side
network protocol. It is responsible for establishing game
sessions with the server, receiving inbound data and
converting it into a human-readable format, and transmitting
the agent’s subsequent actions back to the server, as shown
in Figure 2. Synchronisation is employed to ensure the
consistency of the gamestate across any parallel threads. All
this is implemented transparently to the agent; at each
interval, the bot is simply notified that an update has
occurred, and receives a World object containing a hierarchy
of component objects representing the current gamestate.

 An important point to note is that, because the network
layer is separated from the higher-level classes in the QASE
architecture, it is highly portable. Adapting the QASE API
to games with similar network protocols, such as Quake 3
and its derivatives, therefore becomes a relatively
straightforward exercise; by extending the existing classes
and rewriting the data-handling routines, they could

Figure 1 - Typical Quake 2 environment

Figure 2 - The QASE API and its role in realising Quake agents

Bot
interface

BasicBot
abstract

ObserverBot
abstract

PollingBot
abstract

MatLabObserverBot
abstract

NoClipBot
abstract

MatLabPollingBot
abstract

MatLabGeneralObserverBot
concrete final

MatLabNoClipBot
abstract

MatLabGeneralPollingBot
concrete final

MatLabNoClipGeneralBot
concrete final

Figure 3 - The complete QASE Bot Hierarchy

conceivably be adapted to any UDP-based network game.
Thus, QASE’s network structures can be seen as providing a
template for the development of artificial game clients in
general.

Gamestate Augmentation

Rather than simply providing a bare-bones implementation
of the client-side protocol, QASE also performs several
behind-the-scenes operations upon receipt of each update,
designed to present an augmented view of the gamestate to
the agent. In other words, QASE transparently analyses the
information it receives, makes deductions based on what it
finds, and exposes the results to the agent. As such, it may
be seen as representing a virtual extension of the standard
Quake 2 network protocol.

For instance, the standard protocol has no explicit item
pickup notification; when the agent collects an object, the
server takes note of it but does not send a confirmation
message to the client, since under normal circumstances the
human player will be able to identify the item visually.
QASE compensates for this by detecting the sound of an
item pickup, examining which entities have just become
inactive, finding the closest such entity to the player, and
thereby deducing the entity number, type and inventory
index of the newly-acquired item. Building on this, QASE
records a full list of which items the player has collected and
when they are due to respawn (reappear), automatically
flagging the agent whenever such an event occurs.

Similarly, recordings of Quake 2 matches (see below) do not
encode the full inventory of the player at each timestep - that
is, the list of how many of which items the player is
currently carrying. For research models which require
knowledge of the inventory, such as that outlined in the
QASE and Imitation Learning section below, this is a major
drawback. QASE circumvents the problem by monitoring
item pickups and weapon discharges on each frame, thereby
building an inventory representation in real-time. This can
also be used to track the agent’s inventory in online game
sessions, removing the need to explicitly request a full
inventory listing from the server on each update.

Team-Based Play

QASE is fully compatible with the Threewave CTF
modification for Quake 2, in which players join either a Red
or Blue team and attempt to capture the enemy faction’s flag.
Methods are provided which enable the agent to join a
specific team, or to join randomly; further methods allow the
agent to determine whether a particular player is a member
of its own or the opposing group. In cases where the server
type is not known in advance, the API will automatically
determine the game mode, and if necessary will join an
arbitrary team. QASE is, therefore, well suited to researchers
whose interest lies in investigating team-based behaviours
and interactions.

Bot Hierarchy

While the network layer and gamestate-handling features
described above are technically enough to facilitate the
creation of in-game agents, they operate at too low a level to
be practical for general use; they do not represent a rigorous,
structured framework for the creation of Quake bots. Rather
than requiring users to write agents from scratch and to
manually handle the more menial aspects of client-server
administration, QASE implements a structured hierarchy of
bot classes, allowing rapid prototyping and development of
agents from varying levels of abstraction. These range from
a simple interface class, to full-fledged bots incorporating an
exhaustive range of user-accessible functions. The bot
hierarchy comprises three major levels; these are
summarised below.

Bot
A template which specifies a well-defined, standardised
interface to which all agents must conform, but does not
provide any further functionality; the programmer is entirely
responsible for the actual implementation of the bot, and
may do so in any way (s)he chooses.

BasicBot
An abstract bot which provides most of the functionality
required by Quake 2 agents, such as the ability to determine

whether the bot has died, to respawn (re-enter the game)
after the agent has been defeated, to create an agent given
minimal profile information, to set the agent’s movement
direction, speed and aim and send these to the server, to
obtain sensory information about the virtual world, and to
record itself to a demo file. All that is required of the
programmer is to extend the class, write the AI routine in the
predefined runAI method, and to supply a means of
handling the server traffic according to whatever interaction
paradigm (s)he wishes to use. The third level of the bot
hierarchy provides ready-to-use implementations of two
such paradigms (see below).

BasicBot also provides tailored, transparent access to the
functions of the BSPParser class for environment sensing
and the WaypointMap class for navigation (see later), by
incorporating methods which relay calls to the appropriate
embedded object. Users can also obtain a pointer to the
underlying objects, thereby allowing full access to their
functionality. Certain parameters are pre-defined to the most
useful values; for instance, the bounding box used to trace
through the level by the BSPParser is set to the size of the
agent's in-game character's bounding box. BasicBot will
also transparently find, load and query the BSP file
associated with the current game level when one of the
environment-sensing methods is invoked for the first time.
Naturally, all these facilities are inherited by classes further
down the bot hierarchy.

ObserverBot and PollingBot
The highest level of the Bot hierarchy consists of two
classes, ObserverBot and PollingBot, which
represent fully-realised agents. Each of these provides a
means of detecting changes to the gamestate as indicated by
their names, as well as a single point of insertion - the
programmer needs only to supply the AI routine in the
runAI method defined by the Bot interface. Thus, the
agent is notified of each update as it occurs, a copy of the
gamestate is presented to it, the user-defined AI routines set
the required movement, aiming and action values for the
next update, and the API auto-transmits the changes.

The ObserverBot uses the observer pattern to register its
interest with the observable Proxy, and is thereafter notified
whenever a game update takes place. Since this approach is
single-threaded, a separate thread is created to check
whether the bot has been killed, and to respawn as
necessary. The advantages of this approach are twofold:

• it guarantees consistency of the gamestate; since the

Proxy thread invokes a method call in the ObserverBot,
it must wait until the agent’s AI routine is complete
before receiving any further updates.

• it allows multiple observers to connect to a single
Proxy. This can be useful if the programmer wishes,
for instance, to have a second observer perform some
operation on the incoming data in the background.

The PollingBot, as its name suggests, operates by
continually polling the Proxy and obtaining a copy of the
gamestate World object. If a change in the current frame
number is detected, the agent knows that an update has

occurred, and will enter its AI routine. Because the Proxy
and agent are operating on separate threads, the Proxy is free
to receive updates regardless of what the agent is currently
doing; this multithreaded approach may improve
performance slightly, but could potentially result in changes
to the gamestate arriving while the agent is executing its AI
cycle, if said cycle is excessively long. To prevent this, the
bot can optionally be set to high thread safety mode, in
which the agent and Proxy both synchronize on the
gamestate object; this means that the agent cannot read the
gamestate while it is being written, and the Proxy cannot
write the gamestate while it is being read.

Miscellaneous Bots
Beyond this, several convenience classes are available,
which provide extended bot implementations tailored to
specific purposes. The NoClipBots allow the user to
‘noclip’ the agent (i.e. move it through otherwise solid
walls) to any arbitrary point in the environment before
starting the simulation, which we have found to be extremely
useful in the course of our own research - indeed, the bot
category was added specifically to address our need for such
functionality. The MatLabBot branches facilitate integration
with the MatLab programming environment, and will be
explained later. The full hierarchy is shown in Figure 3.

The DM2 Parser and Recorder

Quake 2’s inbuilt client, used by human players to connect
to the game server, facilitates the recording of matches from
the perspective of each individual player. These demo or
DM2 files are organised into blocks, each of which consists
of a series of concatenated messages representing the
network packet stream received by the client during the
game session; the demo file therefore captures the player’s
every action and the state of all game entities at each discrete
time step. For our own investigations in the field of imitation
learning, a means of parsing these files and extracting the
gameplay samples is essential. QASE’s DM2Parser fulfils
this requirement.

The DM2Parser treats the demo file as a virtual server,
“connecting” to it and reading blocks of data in exactly the
same manner as it receives network packets during an online
game session. A copy of the gamestate is returned for each
recorded frame, and the programmer may query it to retrieve
whatever information (s)he requires.

For examples of the type of data that can be obtained and
analysed, see the sections MatLab Integration and QASE
and Imitation Learning below.

Furthermore, QASE incorporates a DM2Recorder, allowing
the agent to automatically record a demo of itself during
play; this actually improves upon Quake 2’s standard
recording facilities, by allowing demos spanning multiple
maps to be recorded in playable format. QASE accomplishes
this by separating the header information received when
entering each new level from the stream of standard packets
received during the course of the game. The incoming
network stream is sampled, edited as necessary, and saved to
file when the agent disconnects from the server or as an
intermediate step whenever the map is changed.

Environment Sensing

The network packets received by game clients from the
Quake 2 server do not encode any information about the
actual environment in which the agent finds itself, beyond its
current state and those of the various game entities present.
This information is contained in Binary Space Partition
(BSP) files stored locally on each client machine; thus, in
order to provide the bot with more detailed sensory
information (such as determining its proximity to an
obstacle, or whether an enemy is visible), a means of
locating, parsing and querying these map files is required.
QASE’s BSPParser and PAKParser fulfil this need.

The BSP file corresponding to the active map in the current
game session may be stored in the default game directory, a
custom game directory, or in any of Quake 2’s PAK
archives; its filename may or may not match the name of the
map, which is the only information possessed by the client.
If the user sets an environment variable pointing to the
location of the base Quake 2 folder, QASE can automatically
find the relevant BSP by searching each location in order of
likelihood. This is done transparently from the agent’s
perspective; as soon as any environment-sensing method is
invoked, the map is silently located, loaded and queried.

Once loaded, the BSPParser can be used to sweep a line,
box or sphere in any arbitrary direction through the game
world, starting from the agent’s current location; the distance
and/or position at which the first collision with the
environment’s geometry occurs is returned. This allows the
agent to “perceive” the world around it on a pseudo-visual
level - line traces can be used to determine whether entities
are visible from the agent’s perspective, sphere traces can be
used to check whether projectiles will reach a certain point if
fired, and box traces can be used to determine whether the
agent’s in-game model will fit through an opening. Figure 4
below shows the operation of each different trace type.

Environmental Entity Parsing

 Aside from pure geometric data, the BSP files also contain
information about certain active features within the game
environment. These entities, which include doors, lifts,
teleporters and buttons, should not be confused with the
entity information received from the server on each update,
which relates primarily to player movements and weapon
spawns / despawns. The QASE API transparently parses and
extracts the details of all such entities upon the first BSP

query, and performs additional processing in order to allow
the resulting data to be queried from high-level contexts. For
instance, graph-style edge links are created between
teleporters and their destination portals, while methods
within the BasicBot class can be used to easily determine
whether the player is currently standing on a moving
platform.

Inbuilt AI Constructs

For education purposes, QASE incorporates
implementations of both a neural network and a genetic
algorithm generator. These are designed to be used in
tandem - that is, the genetic algorithms gradually cause the
neural network’s weights to evolve towards a given fitness
function. The main classes involved in this process are:

NeuralNet
Builds the network given design parameters, controls the
retrieval and updating of its weights, facilitates output using
logsig or tansig functions, and computes the net's output for
given input. Also allows the network to be saved to disk and
loaded at a later time.

Genetic
The genetic algorithm generator class, which maintains the
gene pool, records fitness stats, controls mutation and
recombination, and generates each successive generation
when prompted. The class also provides methods to save and
load Genetic objects, thereby allowing the genetic algorithm
process to be resumed rather than restarted.

GANNManager
Provides the basic template of a 'bridge' between the GA and
ANN classes, and demonstrates the steps required to evolve
the weights of a population of networks by treating each
weight as a nucleotide in the GA's genome. The class
provides two modes of operation. For offline experiments -
that is, those performed outside a live Quake 2 match - the
GANNManager can be run as a thread, continually assessing
the fitness of each network according to a user-defined
function, recombining the associated genomes, and evolving
towards an optimal solution for a specified duration of each
generation and of overall simulation time. For online
experiments, the class can be attached as an Observer of one
or more Proxy objects, providing direct feedback from the
Quake 2 game world. The class is abstract; it must be
subclassed to provide the necessary fitness and observer
functions, and to tailor its operation to the specific problem

Figure 4 - BSP traces with line, sphere and box. Collision occurs at different points.

at hand. The class also allows the user to save an entire
simulation to disk, and resume it from the same point later.

A k-means calculator class is also included; aside from
serving as an illustration of clustering techniques, it is also
used in QASE’s waypoint map generator (see below). These
features are intended primarily to allow students to
experiment with some AI constructs commonly found in
undergraduate curricula - for more demanding research
applications, QASE allows MatLab to be used as a back-end.

Waypoint Maps

One of QASE’s most useful features, particularly from an
educational point of view, is the aforementioned waypoint
map generator. The most important requirement of any
agent is that it be capable of negotiating its environment.
Although this can be done using the environment-sensing
facilities outlined above, to rely exclusively upon BSP
tracing would be a rather cumbersome and computationally
expensive solution; most traditional methods of navigation
instead employ waypoint maps - topological graphs of the
level, indicating the paths along which the agent can move.
With this in mind, QASE provides a package,
soc.ai.waypoint, specifically designed to facilitate the
rapid construction of such maps.

While the two principal classes of this package, Waypoint
and WaypointMap, can be used to manually build a topology
graph from scratch, QASE also offers a far more elegant and
efficient approach to the problem - the
WaypointMapGenerator. Drawing on concepts
developed in the course of our work in imitation
learning, this simply requires the user to supply a pre-
recorded DM2 file; it will then automatically find the set of
all positions occupied by the player during the game session,
cluster them using the inbuilt k-means classes to produce a
smaller number of indicative waypoints, and draw edges
between these waypoints based on the observed movement
of the demonstrator. The items collected by the player are
also recorded, and Floyd’s algorithm (Floyd, 1962) is
applied to find the matrix of distances between each pair of
points. The map returned to the user at the end of the process
can thus be queried to find the shortest path from the agent’s
current position to any needed item, to the nearest opponent,
or to any random point in the level. Rather than manually
building a waypoint map from scratch, then, all the student
need do in order to create a full navigation system for their
agent is to record themselves moving around the

environment as necessary, collect whatever items their bots
require, and present the resulting demo file to QASE.

The waypoint map functionality is embedded into the
BasicBot class; that is, it provides shortest-path methods
which the agent transparently passes on to an underlying
WaypointMap object. The ability to retrieve the map as
raw positional and edge data is also provided; this is
particularly convenient for reading the map into MatLab, as
shown in Figure 5. Additionally, WaypointMap permits
instances of itself to be saved to disk and reloaded, thereby
enabling users to generate a map once and use it in all
subsequent sessions rather than recreating it each time.

MatLab Integration

For the purposes of our work in imitation learning, we need
a way to not only obtain, but also statistically analyse the
observed in-game actions of human players. Rather than
hand-coding the required structures from scratch, we opted
instead to integrate the API with the Mathworks™ MatLab®
programming environment. Given that it provides a rich set
of built-in toolboxes for neural computation, clustering and
other classification techniques and is already widely used in
research, MatLab seemed an ideal choice to act as an
optional back-end for QASE agents.

Bots can be instantiated and controlled via MatLab in one of
two ways. For simple AI routines, one of the standalone
MatLabGeneralBots shown in Figure 3 is sufficient. A
MatLab function is written which creates an instance of the
agent, connects it to the server, and accesses the gamestate at

Figure 5 - Map of an in-game environment, created using
WaypointMapGenerator, exported to and visualised in
MatLab.

Figure 6 - MatLab/QASE integration. MatLab acts as a back-end in the AI cycle; the agent’s body and brain are separated

each update, all entirely within the MatLab environment.
The advantage of this approach is that it is intuitive and very
straightforward; a template of the MatLab script is provided
with the QASE API. We refer to agents created in this way
as direct MatLab agents.

In cases where a large amount of gamestate and data
processing must be carried out on each frame, however,
handling it exclusively through MatLab can prove quite
inefficient; for this reason, we developed an alternative
paradigm designed to offer far better performance. As
outlined in the Bot Hierarchy section above, QASE agents
are usually created by extending either the ObserverBot
or PollingBot classes, and overloading the runAI
method in order to add the required behaviour. In other
words, the agent’s AI routines are atomic, and encapsulated
entirely within the derived class. Thus, in order to facilitate
MatLab’s insertion into the AI cycle, a new branch of what
we refer to as hybrid agents - the MatLabBots - was
created. Each of these possesses a three-step AI routine:

1. On each server update, the custom QASE agent first

pre-processes the data required for the task at hand; it
then (automatically) flags MatLab to take over control
of the AI cycle.

2. The MatLab function obtains the agent’s input data,
processes it using its own internal structures, passes the
results back to the agent, and signals that the agent
should reassume control.

3. This done, the bot applies MatLab’s output in a

postprocessing step.

This framework is already built into QASE’s MatLabBots;
the programmer need only extend MatLabObserver /
Polling / NoClipBot to define the handling of data in
the pre-processing and postprocessing steps, and change the
accompanying MatLab script as necessary. By separating the
agent’s body (QASE) from its brain (MatLab) in this
manner, we ensure that both are modular and reusable, and
that cross-environment communications are minimised. The
pre-processing step filters the gamestate, presenting only the
minimal required information to MatLab; QASE thus
enables both MatLab and Java to process as much data as
possible in their respective native environments. This has
proven extremely effective, both in terms of computational
efficiency and ease of development.

Aside from creating game agents, MatLab can also use the
various supporting functions of the QASE API. From our
perspective, one of the most important of these is the ability
to read and process demonstrations of gameplay using the
DM2Parser. Figure 5 shows an example of this, using the
WaypointMapGenerator in conjunction with
DM2Parser to create a map of the game environment from
human demonstration; see the section QASE and Imitation
Learning for more.

Of course, the fact that we integrated QASE with MatLab
specifically to facilitate our work in imitation learning does
not diminish its potential for use in other areas; QASE is
designed for broad AI research, and the ability to build a

back-end using MatLab - a tool with which researchers are
already intimately familiar - is ideally suited to this purpose.

QASE AND OTHER APIs

During the initial exploratory phase of our research, we
investigated a number of candidate APIs, originally
intending to adopt one of them for use in our own
experiments; as mentioned earlier, we were not satisfied that
any of them provided the tools we would ultimately need.
Here, we discuss these APIs. While each has some positive
elements, we explain why in each case we felt that they fell
short of our ideal platform, and in what ways we designed
QASE to be a preferable alternative.

Quake 2 Bot Core
One of the earliest attempts to facilitate bot programming in
Quake 2, the Bot Core (Swartzlander 1999) comprises an
implementation of the game’s client-side network protocol
written in pure C, together with a very basic template for
creating an AI cycle. It soon became apparent that it was a
less than ideal platform for our work; parts of the network
protocol had been neglected, other parts were not
functioning reliably, it required that each agent be compiled
into a separate executable, and its potential extensibility was
extremely limited, making it an unsuitable choice for high-
end research applications in general.

GameBots
The GameBots project (Adobbati et al 2001) allows
communication between Epic Games’ Unreal Tournament
and other software, channelling messages to and from the
server via a socket interface. Messages are both sent and
delivered as ASCII strings, adhering to a predefined format.
While this allows a wide range of programs to interface with
the server, it is a bare-bones system; the user must write his
own parser for the game messages, there are no supporting
AI structures or logic included in the API, and
communication is handled exclusively through scripting,
with no low-level access available. Additionally, the socket
interface which exposes the gamestate to external control is
implemented via a modified version of the game server; it is
therefore not possible to create an agent and connect it to an
arbitrary Unreal Tournament match - agents can only
communicate with a server running the GameBots mod.

Quagents
The Quagents project (Brown et al 2005) is intended
primarily to propose Quake as a virtual testbed for robot and
“ant colony”-style agent simulations. Its approach is quite
similar to that of the GameBots API described above;
Quagents is a recompiled modification of the Quake 2
libraries, which exposes the internal workings of the game to
external manipulation via predefined script commands.
Again like GameBots, the implementation of the actual agent
controller itself is left to the user, although a sample
application allowing for real-time control of the bot is
supplied. However, Quagents also modifies the content of
the game itself, implementing a stripped-down version of the
original by eliminating many items, simplifying the agent’s
movement functions, and reducing the interactivity of the
bot with the game world (Quagents, for instance, cannot
engage in combat against each other).

In the case of both GameBots and Quagents APIs, their
respective constraints - the elimination of features present in
the original game, the limitations imposed by requiring the
server to have the relevant modification installed, the lack of
supporting structures and functionality - were among the
primary reasons for our ultimate decision to reject them as
viable candidate platforms for our reseach.

FEAR SDK
The most mature of the pre-existing first-person shooter
APIs we investigated, FEAR (Champandard 2002) is once
again a modification of the game’s shared libraries; unlike
GameBots and Quagents, however, FEAR also provides a
framework for creating the agent controller itself. These
must be compiled as DLLs and placed in appropriate
subdirectories under the main FEAR mod folder; bots are
then deployed by issuing commands from the server console
during a game session. This has the drawback, however, of
requiring not only that the server be running FEAR - as with
GameBots and Quagents - but that the code for all desired
agents be present on the same machine when the game
session begins. If, for instance, multiple researches from
different institutes wish to compare their agents, they cannot
simply connect to a common server and deploy them. FEAR
also includes a variety of in-built AI structures, including
FSAs, decision trees, neural networks and rule-based
systems. While such features are welcome, we felt that the
inability (or at least, significant difficulty) of allowing
external processing during the agent’s AI cycle was quite
limiting. MatLab, for instance, provides a vastly greater
range of functionality than that embedded within FEAR, and
is already a familiar working environment for many
researchers. The SDK is also quite unintuitive in certain
respects, which attenuates its utility as an educational aid.
Moreover, the fact that the SDK is inextricably linked to the
game engine renders it incompatible with other mods, such
as the CTF team-based modification described earlier, unless
the user were to manually subsume the CTF code into
FEAR.

TIELT
The Testbed for Integrating and Evaluating Learning
Techniques (Molineaux & Aha 2005) is a middleware
platform designed to act as a generic intermediary between
game engines and decision systems, somewhat similar to
QASE’s MatLab integration architecture as described
earlier. For each game, users employ TIELT’s inbuilt editor
and scripting language to develop a series of knowledge
bases; these consist of XML files defining elements such as
the objects contained in the gamestate, events that may
occur, state transition rules, messaging formats for
communication with the game server and decision system,
etc. The majority of applications have thus far centred upon
real-time strategy games, although a bot has also been
created for Unreal Tournament as proof-of-concept. While
TIELT is an excellent general-purpose tool for research
across different games, it is by necessity removed from the
low-level details of each; we felt that our work - and that of
other groups interested in pursuing research in first-person
shooter games - would be better served by a consolidated
API with a wide range of inbuilt functionality. Had we
adopted TIELT for the purposes of interfacing our decision

systems with Quake 2, we would have needed to write
separate packages for reading human behaviour data from
demo files, dealing with BSP geometry and environmental
entities like lifts and doors, constructing navigation graphs,
and so forth; this would have resulted in precisely the kind
of ad-hoc, non-reusable amalgamation of software that we
wished to avoid.

QASE: OUR APPROACH
Having examined the platforms outlined above, we
concluded that none provided the combination of simplicity,
power, modularity, reusability and extensibility that an
educational and research tool of this kind required. We felt,
as noted earlier, that the lack of such a platform was a major
impediment to the adoption of first-person games in both
areas, and sought to remedy this; it was always our main
priority that the API be designed for the widest possible
range of applications, rather than constraining itself to the
specific needs of our own work. As such, QASE
incorporates not only solutions to the various hurdles we
encountered in the course of our research, but all the features
which occurred to us as being potentially beneficial for
others. Written in Java, the API itself consists of a single
~160kb JAR library, which can run unmodified on any JRE-
enabled machine. As detailed elsewhere, it permits low-level
access to gamestate and environmental information for those
who want it, while also supplying high-level interfaces and
convenience functions which perform the necessary
gamestate-handling tasks transparently. It provides
illustrative built-in AI structures for educational purposes,
and facilities both the automatic generation and manual
construction of full navigational systems. Its efficient and
flexible MatLab integration provides an extremely powerful
back-end engine with which researches are already
intimately familiar. Unlike the approaches adopted by
several of the APIs described above, its network layer
encapsulates a full client-side implementation of the Quake 2
network protocol, meaning that it is cleanly decoupled from
the server implementation; a QASE agent can connect to and
be deployed upon any arbitrary Quake 2 server, Windows or
Linux, modified or otherwise. It comes with full, detailed
documentation and a series of articles focussing on the
network protocol, the BSP file structure, and other subjects
which will be of use to researchers embarking upon work in
this area. Finally, it is worth noting that QASE is still in
active development, and is evolving in response to the
comments of groups and individuals who have adopted it;
the other APIs mentioned above, with the exception of
TIELT, are no longer maintained.

QASE AND IMITATION LEARNING

In this section, we outline an experiment conducted in the
course of our work. While it by no means demonstrates the
full extent of QASE’s faculties, this example does provide a
good indication of its potential in the field of research. The
following is drawn from our papers “Towards Integrated
Imitation of Strategic Planning and Motion Modelling in
Interactive Computer Games” (Gorman & Humphrys 2005)
and “Believability Testing and Bayesian Imitation in
Interactive Computer Games” (Gorman et al 2006).

One of the first questions which arises when considering the
problem of imitation learning is, quite simply, “what
behaviours does the demonstration encode?” A well-
structured model of the human player’s actions would
facilitate an organised analysis of the observation data,
greatly aiding the imitation process. To this end, (Thurau et
al 2004a) propose a model of in-game behaviour based
closely on Hollnagel’s COCOM (Hollnagel 1993), as shown
in Figure 7.

Strategic behaviours refer to actions the player takes with
long-term goals in mind, such as adjusting his traversal of
the map to maximise the number of items in his possession.
Tactical behaviours are mostly concerned with localised
tasks such as evading or engaging opponents. Reactive
behaviours involve little or no planning; the player simply
reacts to stimuli in his immediate surroundings. Motion
modelling refers to the imitation of the player’s movement;
in theory, this should produce humanlike motion along the
bot’s path, and should also prevent the agent from
performing actions which are impossible for the human
player’s mouse-and-keyboard interface (instantaneous 180˚
turning, perfect aim, etc).

Goal-Oriented Strategic Behaviour

In order to learn long-term strategic behaviours from human
demonstration, we developed a model designed to emulate
the notion of program level imitation discussed in (Byrne
and Russon 1998); in other words, to identify the
demonstrator’s intent, rather than simply reproducing his
precise actions. In Quake 2, experienced players traverse the
environment methodically, controlling important areas of the
map and collecting items to strengthen their character. Thus,
we define the player’s long-term goals to be the items
scattered at fixed points around each level. By learning the
mappings between the player’s status and his subsequent
item pickups, the agent can adopt observed strategies when
appropriate, and adapt to situations which the player did not
face.

Topology Learning

As mentioned earlier, in the context of Quake, strategic
planning is mostly concerned with the efficient collection

and monopolisation of items and the control of certain
important areas of the map. With this in mind, we first read
the set of all player locations },,{ zyxl =

r
 from the DM2

recording into MatLab via QASE’s DM2Parser, and the
points are clustered to produce a reduced set of positions,
called nodes. We initially employed the Neural Gas
algorithm in this step, since it has been demonstrated to
perform well in topology-learning tasks (Martinez et al
1993); however, we later developed a custom modification
of Elkan’s fast k-means (Elkan 2003) designed to treat the
positions at which items were collected as immovable
“anchor” centroids, thereby deriving a goal-oriented
clustering of the dataset. By examining the sequence of
player positions, we also construct an n x n matrix of edges
E, where n is the number of clusters, and Eij = 1 if the player
was observed to move from node i to node j and 0 otherwise.

Deriving Movement Paths

Because the environment described above may be seen as a
Markov Decision Process, with the nodes corresponding to
states and the edges to transitions, we chose to investigate
approaches to goal-oriented movement based on concepts
from reinforcement learning, in particular the value iteration
algorithm.
To do so, we first read the player’s inventory - the list of
what quantities of which items he currently possesses - using
the inventory-tracking facilities of DM2Parser described
earlier, and we then obtain the set of unique inventory states;
these inventory prototypes represent the varying situations

Figure 7 - Thurau’s adaptation of Hollnagel's COCOM

Figure 8 - An example of a path followed by the player while in a
particular inventory state. The path originates in the lower part
of the level, and ends at the point where the player picked up an
item that caused his inventory to shift towards another
prototype.

Figure 9 - The ascending rewards assigned to one of the paths
followed by the player (blue/red), and the results of the value
iteration algorithm (green & magenta). The y-axis deontes the
values associated with each waypoint in the topological map.

faced by the player during the game session. We can now
construct a set of paths which the player followed while in
each inventory state. These paths consist of a series of
transitions between clusters:

],...,,[,2,1, kiiii ccct =

where ti is a transition sequence (path), and ci,j is a single
node along that sequence. Each path begins at the point
where the player enters a given state, and ends where he
exits that state - in other words, when an item is collected
that causes the player’s inventory to shift towards a different
prototype. See Figure 8 for an illustration of this.

Assigning Rewards

Having obtained the different paths pursued by the player in
each inventory state, we turn to reinforcement learning to
reproduce his behaviour. In this scenario, the MDP’s actions
are considered to be the choice to move to a given node from
the current position. Thus, the transition probabilities are

ijEjaisjsP ====),|'(

To guide the agent along the same routes taken by the
player, we assign an increasing reward to consecutive nodes
in each path taken in each prototype, such that

jcpR jii =),(,

where pi is a prototype, and ci,j is the jth cluster in the
associated movement sequence. Each successive node along
the path’s length receives a reward greater than the last, until
the final cluster (at which an inventory state change
occurred) is assigned the highest reward. If a path loops
back or crosses over itself en route to the goal, then the
higher values will overwrite the previous rewards, ensuring
that the agent will be guided towards the terminal node while
ignoring any non-goal-oriented diversions. Thus, as
mentioned above, the agent will emulate the player’s
program-level behaviour, instead of simply duplicating his
exact actions.

Learning Utility Values

With the transition probabilities and rewards in place, we
can now run the value iteration algorithm in order to
compute the utility values for each node in the topological
map under each inventory state prototype. The value
iteration algorithm iteratively propagates rewards outwards
from terminal nodes to all others, discounting them by
distance from the reward signal; once complete, these utility
values will represent the “usefulness” of being at that node
while moving to the goal.

In our case, it is important that every node in the map should
possess a utility value under every state prototype by the end
of the learning process, thereby ensuring that the agent will
always receive strong guidance towards its goal. We adopt
the game value iteration approach outlined in (Hartley et al
2004) - the algorithm is applied until all nodes have been
affected by a reward at least once. Figure 9 above shows the
results of the value iteration algorithm on a typical path.

Multiple Weighted Objectives

Faced with a situation where several different items are of
strategic benefit, a human player will intuitively weigh their
respective importance before deciding on his next move. To
model this, we adopt a fuzzy clustering approach. On each
update, the agent’s current inventory is expressed as a
membership distribution across all prototype inventory
states. This is computed as:

∑ =
−

−

= P

i

p
isd

psdsm
1

1

1

),(
),()(rr

rr

where s is the current inventory state, p is a prototype
inventory state, P is the number of prototypes, d -1 is an
inverse-distance or proximity function, and mp(s) is the
degree to which state vector s is a member of prototype p,
relative to all other prototypes. The utility configurations
associated with each prototype are then weighted according
to the membership distribution, and the adjusted
configurations superimposed; we also apply an online
discount to prevent the possibility of backtracking. The
formula used to compute the final utilities is thus:

∑ =
=

P

p pp
ce smcVcU

1
)()()()(γ

}1|{),(max1 =∈=+ xcyt t
ExyyUc

where U(c) is the final utility of node c, γ is the online
discount, e(c) is the number of times the player has entered
cluster c since the last state transition, Vp(c) is the original
value of node c in state prototype p, and E is the edge
matrix.

Object Transience

Another important element of planning behaviour is the
human’s understanding of object transience. A human
player intuitively tracks which items he has collected from
which areas of the map, can easily estimate when they are
scheduled to reappear, and adjusts his strategy accordingly.
In order to capture this, we introduce an activation variable
in the computation of the membership values; inactive items
are nullified, and the membership values are redistributed
among those items which are still active.

∑=
−

−

= P

i i

p
p

isdoa

psdoa
sm

1
1

1

),()(

),()(
)(rr

rr

where a, the activation of an item, is 1 if the object o at the
terminal node of the path associated with prototype state p is
present, and 0 otherwise.

Bayesian Motion Modelling

In the course of a game session, human players exhibit
actions other than simply moving along the environment
surface, including jumps, weapon changes and discharges,
crouches, etc. In many cases, the player can only attain
certain goals by performing one or more such actions at the
appropriate time; they therefore have an important functional
aspect. From the perspective of creating a believable agent,

it is also vital to reproduce the human aesthetic qualities they
encode - the agent should not, for instance, be capable of
instantaneously turning 180°, since this would be impossible
for the human’s mouse-and-keyboard interface. For the
purposes of our agent, then, a means of imitating these
actions is essential.

In a previous contribution, Thurau et al describe an approach
based on Rao, Shon & Meltzoff’s Bayesian inverse-model
for action selection in infants and robots. The choice of
action at each timestep is expressed as a probability function
of the subject’s current position state ct, next position state
ct+1 and goal state cg, as follows:

∑ +

+
+ =

u
gtuutt

gttttt
gttt ccaPaccP

ccaPaccP
cccaP

),|(),|(
),|(),|(

),,|(
1

1
1

It is immediately clear that this model fits into the strategic
navigation system almost perfectly; the clusters ct and ct+1
are chosen by examining the utility values, while the current
goal state is implicitly defined by the membership
distribution. In order to derive the probabilities, we read the
sequence of actions taken by the player as a set of vectors v
such that

v = [Δyaw, Δpitch, jump, weapon, firing]

We then cluster these action vectors to obtain a set of action
primitives, each of which amalgamates a number of similar
actions performed at different times into a single unit of
behavior.

Several important adaptations must be made in order to use
this model in the game environment. Firstly, in practice we
decouple the yaw and pitch elements of the action vector
from the remainder, and sequence them separately - this
produces a more fine-grained clustering of the primitives.
Secondly, Rao’s model assumes that transitions between
states are instantaneous, whereas multiple actions may be
performed in Quake 2 while moving between successive
clusters; we therefore express P(ct+1|ct,at) as a soft-
distribution of all observed actions on edge Ect,ct+1 in the
topological map. Third, Rao assumes a single unambiguous
goal, whereas we deal with multiple weighted goals in
parallel. We thus perform a similar weighting of the
probabilities across all active goal clusters. Finally, Rao’s
model assumes that each action is independent of the
previous action. In Quake 2, however, each action is
constrained by that performed on the preceding timestep; we
therefore introduce an additional dependency in our
calculations. The final probabilities are computed as follows:

∑∑
−

−
+

u
uu

tt
gttt

g
g aaP

aaP
cccaPm

)|(
)|(

),,|(
1

1
1

The priors can now be derived by direct examination of the
observation data.

Deploying the Agent
With the DM2 data extracted and the required values
computed, we can now deploy the agent. We extend any of
the MatLabBots, implementing preMatLab such that it

Figure 10 - Examples of a QASE agent in action, drawn from our experiments in imitation learning. The top sequence shows the agent
leaning into and strafing around a corner, as a human player does. In the middle, the agent’s next goal is an item on top of the box. As it
approaches, it looks downwards, jumps, and fires a rocket to propel itself upwards. This so-called rocket jump is considered an
advanced move and is commonly employed by players to reach otherwise inaccessible areas. Bottom, the agent interacts with a lift by
standing still as it ascends, then jumps off at the top, an unnecessary action which is nonetheless common among human players.

extracts the player’s current position and inventory from the
gamestate; these are then passed to MatLab. We also rewrite
the MatLab template script to instantiate the agent and
connect it to the server. On each update, MatLab determines
the closest matching state prototype and node, extracts and
weights the relevant utility configurations, finds the set of
 nodes connected to the current node by examining the edge
matrix, and selects the successor with the highest utility
value; it then examines the current position cluster, the
cluster to which the agent is moving, the current goal
distribution, and the last executed action primitive,
computing from this the appropriate subsequent pitch, yaw,
weapon, jump and firing state. All this data is then passed
back to QASE and is received by the agent’s postMatLab
method, which we have implemented such that it computes
the direction between its current position and the next node
and sets the agent’s movement accordingly; the bot’s
orientation is simultaneously altered to reflect the specified
action primitive. As the agent traverses its environment, item
pickups and in-game events will cause its inventory to
change, resulting in a corresponding change in the utility
values and attracting the agent towards its next objective.
Figure 10 shows the QASE agent in action.

CONCLUSION

In this paper, we identified the lack of a fully-featured,
consolidated yet intuitive API as a major impediment to the
adoption of commercial games in AI education and research.
We then presented our QASE API, which was developed
to meet these requirements. Several of its more important
features were described, and their usefulness highlighted;
these features were then compared against existing game-
based artificial intelligence APIs. A practical demonstration
of QASE as it has been used in our own research closed this
contribution.

Since its release, QASE has already attracted attention from
several quarters. From our correspondence, we know that it
is currently used at Bielefeld University, Germany; it has
been adopted by researchers at China’s Huazhong University
and at Deustche Telekom; and it is used as both a research
tool and undergraduate teaching aid at the University of Las
Palmas de Gran Canaria. The number of downloads recorded
thus far, along with some casual Google searches, suggest
that several other groups are also utilising it in their work.
As more such individuals discover QASE, the resulting
feedback will aid us in continually improving the API; as
part of that continuing effort, we hope that this paper will
help to stimulate further interest in QASE, in imitation
learning, and in the potential of games in AI research and
education in general.

FUTURE WORK

Although we regard it as being very feature-rich at this
point, QASE will continue to develop as we progress in our
research. The two tracks of our work - that of investigating
approaches to imitation learning and of building an
accompanying API - have thus far informed each other; as
mentioned earlier, QASE’s waypoint generator is derived
from the approach outlined in the section QASE and
Imitation Learning. In this way, further developments in our
research will guide future development of the API.

To download the API and accompanying documentation,
please visit the QASE homepage: http://qase.vze.com

REFERENCES

Adobbati R, Marshall AN, Scholer A, Tejada S, Kaminka G,
Schaffer S, and Sollitto C (2001): “Gamebots: A 3D virtual world
test-bed for multi-agent research”, in Proc Second International
Workshop on Infrastructure for Agents, MAS, and Scalable MAS

Bauckhage C, Thurau C. & Sagerer G. (2003): Learning Humanlike
Opponent Behaviour for Interactive Computer Games, Pattern
Recognition, Vol 2781

Brown CM, Ferguson G, Barnum P, Bo Hu, Costello D (2005):
"Quagents: A Game Platform for Intelligent Agents", in Proc First
Artificial Intelligence and Digital Entertainment Conference

Byrne, R.W. and Russon, A.E. "Learning by Imitation: A
Hierarchical Approach", Behavioral and Brain Sciences (1998) 21,
667-721

Champandard AJ (2002): FEAR SDK, http://fear.sourceforge.net

Elkan, C. "Using the Triangle Inequality to Accelerate k-Means",
Proc. 20th International Conference on Machine Learning 2003

Fairclough, C., Fagan, M., MacNamee, B and Cunningham, P.
Research Directions for AI in Computer Games. Technical report,
2001.

Floyd, R.W., Algorithm 97, Shortest path, Comm. ACM. 5(6),
1962, 345

Girlich, U., Unofficial Quake 2 DM2 Format Description, 2000

Gorman, B & Humphrys, M: “Towards Integrated Imitation of
Strategic Planning and Motion Modelling in Interactive Computer
Games”, Proc. 3rd Intl. Conf. in Computer Game Design &
Technology, GDTW05, pages 92-99

Hartley, T, Mehdi, Q and Gough, N. “Applying Markov Decision
Processes to 2D Real-Time Games”, Proc. CGAIDE 2004: p55-59

Hollnagel, E. (1993) Human reliability analysis: Context and
control. L:AP

Jenkins, OC and Mataric, MJ "Deriving Action and Behavior
Primitives from Human Motion Data". Proc. IEEE/RSJ IROS-2002,
pages 2551-2556

Laird, J. E. and v. Lent, M. (2000). Interactive Computer Games:
Human-Level AI’s Killer Application. AAAI, pages 1171-1178.

Laird, J.E. Using a Computer Game to develop advanced AI. IEEE
Computer, pages 70 -75, July 2001.

Martinez, T. and Schulten, K. (1991). A neural gas network learns
topologies. In Artificial Neural Networks. Elseviers Science
Publishers

Molineaux M & Aha D(2005): “TIELT: A testbed for gaming
environments”. Proceedings of the 16th National Conference on
Artificial Intelligence (pp. 1690-1691)

Naraeyek, A. Computer Games - Boon or Bane for AI Research.
Künstliche Intelligenz, pages 43-44, February 2004

Schaal, S. Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3(6):233-242, 1999

Sklar, E., AD Blair, P Funes & J. Pollack, 1999: Training
Intelligent Agents Using Human Internet Data, 1st Asia-Pacific
IAT

Swartzlander B (1999): Quake 2 Bot Core,
http://www.telefragged.com/Q2BotCore

Thurau, C., C. Bauckhage & G. Sagerer 2004a: Learning
Humanlike Movement Behaviour for Computer Games, in Proc.
8th Intl. SAB Conf.

Thurau, C., C. Bauckhage & G. Sagerer 2004b: Synthesising
Movement for Computer Games, in Pattern Recognition, Vol. 3175
of LCNS Springer

B. Gorman, C. Thurau, C. Bauckhage, and M. Humphrys:
Believability Testing and Bayesian Imitation in Interactive
Computer Games, In Proc. 9th Int. Conf. on the Simulation of
Adaptive Behavior (SAB'06), LNAI 4095, p 655-666

APPENDIX A:
QASE PACKAGE STRUCTURE

Having detailed the intent, design and implementation of the API,
we here provide QASE’s full package structure. This will help to
situate the concepts discussed above, and is intended as a
practical aid for programmers wishing to avail of the
features offered by QASE. For further details, please consult
the QASE Specification and the Javadoc accompanying the
API.

QASE (soc.qase) consists of several packages. While
perhaps somewhat daunting at first glance, the overall
structure of the API is designed to be as intuitive and
modular as possible. The following section describes the
function of each package in greater depth.

soc.qase.ai
This package contains a number of subpackages and classes
designed to provide some in-built AI functionality. Intended
primarily for education purposes, since more heavy-duty
research work can make use of the MatLab integration
discussed earlier.

soc.qase.ai.gann

Consists of classes which implement a GANN architecture -
that is, neural networks which learn through the application of
evolutionary algorithms. Designed to allow students to examine
and experiment with ready-made implementations of these
common undergraduate constructs.

soc.qase.ai.kmeans

The kmeans package is designed to give students an insight
into some basic principles of clustering techniques, and how
they can be used. It is also heavily employed by various classes
in the waypoint package (see below).

soc.qase.ai.waypoint

 Facilitates the creation of navigation systems for the agent. Of
particular note is the WaypointMapGenerator class,

which takes a recording of a human player traversing a level
and automatically builds a full navigation system using the
kmeans and dm2 packages, according to concepts outlined in
(Gorman & Humphrys 2005). Waypoint maps can also be built
manually. See the relevant section in the main paper.

soc.qase.bot
Contains classes facilitating the creation and control of Quake 2
agents from differing levels of abstraction. See Appendix B for
more details.

soc.qase.bot.matlab, soc.qase.bot.matlab.general

soc.qase.bot.matlab.sample

Contain classes which enable the integration of QASE with the
MatLab programming environment. See the relevant section of
the main text for more.

soc.qase.bot.sample

 Contains a number of sample agents designed to demonstrate
the procedure involved in writing an autonomous bot.

soc.qase.com
 The classes contained in the com package are used to
implement low-level communication between a proxy
component and the Quake 2 server. Mostly, therefore, these
objects are for internal use, and can be ignored by a casual
user of the API. However, the com package also includes the
physical implementation of the QASE agent interface, in the
form of the Proxy class.

soc.qase.com.packet

Consists of classes representing each packet type used in the
course of a game session (client-to-server, server-to-client,

Figure 11 - Package outline of the QASE API

connectionless). Used as wrappers for the various Message
classes, whose type and content are derived from the packet
payloads.

soc.qase.com.message

Contains classes which encapsulate the data conveyed by each
type of message used in a game session, including both client-
to-server messages (move agent, etc) and server-to-client
messages (gamestate info, configuration, etc)

soc.qase.file
Consists of a set of subpackages designed to allow QASE to
parse different file formats used by Quake 2, to store resource
archives, recorded game sessions, or world geometry.

soc.qase.file.bsp

Contains the BSPParser and related classes. This allows
QASE to read, parse and query the geometry of a game level,
which Quake 2 stores in local BSP (Binary Space Partition)
files. The BasicBot class contains a number of environment-
sensing methods which automatically find, load and query the
current in-game map, using BSPParser in conjunction with
PAKParser.

soc.qase.file.dm2

Contains the DM2Parser and DM2Recorder classes. The
former allows QASE to read the recorded demo of a match by
treating the .dm2 file as a virtual server, ‘connecting’ to it and
reading the gamestate at each frame as it would during an
online session. The latter allows QASE agents to automatically
record themselves to file during play; this actually improves
upon the standard Quake 2 recording facilities, by allowing
matches spanning more than a single map to be recorded in
playable format.

soc.qase.com.pak

The PAKParser class allows QASE to read and extract the
contents of a PAK, the format use by Quake 2 to store multiple
resource files in a single consolidated archive. Used extensively
by BasicBot to automatically find and load the current map.

soc.qase.info
There are a number of classes in the info package, mainly
intended for internal use by the API itself; these relate to the
transfer of configuration data between server and client. The
only class that should actually be used directly by the
programmer is the User class which specifies player options,
and even this is automated by the existing Bot hierarchy.

soc.qase.state
Contains classes representing each of the elements defining the
current state of the game world and the desired change-of-state
effected by the agent. The former includes game entities, the
agent’s movement, its status, inventory and gun, irregular
events and sounds; the latter includes the agent’s velocity,
orientation and actions.

soc.qase.tools
Contains miscellaneous tools used throughout the API. The
core Utils class provides methods to generate random
numbers, convert byte arrays to data types and vice-versa,
convert angular measurements to 2D vectors, parser
environment variables, and more.

soc.qase.com.vecmath

Contains Vector2f and Vector3f classes which facilitate
2D and 3D vector manipulation.

APPENDIX B:
CREATION OF QASE AGENTS
In this section, the procedures involved in creating different
types of QASE agent are outlined by demonstration. QASE
agents fall into one of two broad categories; standalone
agents, in which the AI routine is completely atomic and
internalised within the runAI method inherited from
BasicBot, and MatLab agents, wherein QASE acts as a
“gamestate filter” and the AI routines themselves are
implemented in the MatLab environment.

Standalone Agents
Creating a standalone QASE agent is extremely
straightforward, thanks to the degree of automation provided
by the API. All the programmer needs to do is create a
subclass of ObserverBot, PollingBot or NoClipBot
as appropriate, and write the necessary AI routines by
implementing the abstract runAI method. Examples of both
Polling and Observer agents are included with QASE, in the
soc.qase.bot.sample package; each of these bots,
when connected, will simply run directly towards the closest
item in the game environment, collect it, and move on.

MatLab Agents
QASE agents which use MatLab as a back-end engine fall
into one of two subcategories - they can either be direct
MatLab agents, or hybrid agents. The former involves using
one of the MatLabGeneralBots and writing the entire
AI routine, including all gamestate parsing operations,
within a MatLab script; this is the most straightforward
approach, but is also quite computationally costly. The latter
involves creating a subclass of MatLabObserver /
Polling / NoClipBot, filtering the gamestate on each
update, and passing only the minimal necessary state
information to a partner MatLab script; this has the dual
advantage of being more efficient and of allowing both
script and agent to be modular and reusable. Hybrid agents,
due to their significantly better performance, are the
preferred paradigm - all our own research is conducted using
hybrids. For both agent categories, QASE automates all
information-passing functions, requiring only that the
programmer write the AI routines themselves. Template
MatLab scripts are supplied.

Before any agents can be created, however, it is necessary to
import the API into the MatLab environment. The MatLab
scripts supplied with the QASE API include prepQASE.m,
which automates this process. All that is required is for the

user to edit the script to reflect the location at which the
library JAR file is stored on his/her machine.

Direct MatLab Agents
Creating a direct agent involves simply editing the supplied
BotManagerGeneralTemplate.m script, to supply the
gamestate-parsing and AI routines in the main loop. When
creating direct agents, it is preferable to use
MatLabGeneralPollingBot rather than
MatLabGeneralObserverBot, as the former gives
superior performance; no such performance discrepancy
exists in the case of hybrid agents. An example of one such
agent is provided with the API. As with the standalone
agents, the SampleBotManagerGeneral.m script will
connect a bot to a local server, and instruct it to continually
pursue the nearest active item.

Hybrid MatLab Agents
The advantage of using direct agents is that the MatLab code
is very simple, and closely resembles that of a standalone
agent. However, because it requires MatLab to perform a
significant amount of Java object manipulation, it becomes
quite computationally inefficient if large quantities of data
are needed from the gamestate. Additionally, it means that a
new script must be written from scratch for each agent. With
this in mind, we developed an alternative paradigm designed
to fulfil two criteria:

• maximise efficiency by minimising cross-platform

communication between MatLab and the JVM

• separate the body of the agent (QASE) from its brain

(MatLab), allowing both to be modular and reusable

As mentioned in the “MatLab Integration” section earlier,
the standalone bots’ AI routines are internalised and atomic,
contained entirely within the runAI method. In order to
facilitate MatLab, a new branch of agents, the MatLabBots,
was created. Each of these conceptually possesses a three-
step AI routine as follows:

1. Pre-process the data required for the task in QASE

2. Processes the input data natively in MatLab according

to specified AI routines

3. Post-process the output data in QASE, applying it to the

agent as appropriate.

The pre-processing step filters the gamestate, presenting
only the minimal required information to MatLab and
thereby enabling both MatLab and Java to process as much
data as possible in their respective native environments. In
practice, QASE automates all transfer of data between
QASE and MatLab, requiring only that the programmer
supply the actual AI routines themselves. The steps
involved in creating a hybrid agent are as follows:

1. Create a concrete subclass of MatLabObserver / Polling
/ NoClipBot. In particular, implement the two abstract
methods as follows:

• preMatLab - extract the input required for the given
task from the gamestate and format it according to how
MatLab will subsequently use it, placing the data into
the supplied Object[]. Typically, this array will be
populated with a series of individual float[] arrays,
each supplying a different element of the input.

• postMatLab - apply the results obtained from

MatLab’s AI routines as appropriate. Again, this output
usually takes the form of an Object[] populated with
individual float[] arrays.

2. Edit the template MatLab script in
BotManagerTemplate.m to supply the necessary
AI routines, performing computations upon the input
data and placing the results in the output cell array
provided. No direct action need be taken to affect the
agent’s state; this will be done passively when the
output data is passed to QASE.

The framework for passing data to and from MatLab is
automated in QASE’s MatLabBots, and the abstract
methods and scripts are designed in such a way as to
minimise the amount of code the programmer must write. By
separating the concerns of each platform in this manner, we
furthermore facilitate the reuse of both scripts and derived
agents across different experiments.

APPENDIX C:
QASE AGENTS - CODE SAMPLES

Over the following pages, we present some code samples to
better illustrate the creation of QASE agents. The examples
below are drawn from the sample agents included in the API
itself (for standalone QASE bots) and the MatLab template
scripts which accompany it (for direct / hybrid MatLab bots).

% substitute path to QASE lib on current system
javaaddpath('C:\path_to_QASE\qaselib.jar');

import soc.qase.com.*;
import soc.qase.info.*;
import soc.qase.state.*;
import soc.qase.bot.matlab.sample.*;
import soc.qase.bot.matlab.general.*
import soc.qase.file.dm2.*;

% add any further imports here

Figure 12 - prepQASE.m imports common packages into
the MatLab environment

Figure 13 - Extract from SampleObserverBot.java, an example of a standalone QASE agent (abridged)

function [] = BotManagerGeneralTemplate(botTime, recordFile)

 prepQASE; % import the QASE library

 try
 % create and connect the bot
 matLabBot = MatLabGeneralPollingBot('MatLabGeneralPolling','female/athena');
 matLabBot.connect('127.0.0.1',-1,recordFile);

 tic;

 % loop for the specified amount of time
 while(toc < botTime)
 if(matLabBot.waitingForMatLab == 1)
 % World state read from agent %
 % app-dependent computations here %
 % fov, velocity, etc applied directly %
 matLabBot.releaseFromMatLab;
 end

 pause(0.01);
 end
 catch
 disp 'An error occurred. Disconnecting bots...';
 end

 matLabBot.disconnect;
end

Figure 14 - The BotManagerGeneralTemplate.m script file. Direct MatLab agents are created by editing this
template to add the required AI computations in the main loop, as indicated.

 public void runAI(World w)
 {
 ...

 world = w;
 player = world.getPlayer();
 entities = world.getItems();

 ...

 // find nearest item entity
 for(int i = 0; i < entities.size(); i++)
 {
 tempEntity = (Entity)entities.elementAt(i);

 tempOrigin = tempEntity.getOrigin();
 entPos.set(tempOrigin.getX(), tempOrigin.getY(), 0);

 tempOrigin = player.getPlayerMove().getOrigin();
 pos.set(tempOrigin.getX(), tempOrigin.getY(), 0);

 entDir.sub(entPos, pos);

 if((nearestEntity == null || entDir.length() < entDist)
 && entDir.length() > 0)
 {
 nearestEntity = tempEntity;
 entDist = entDir.length();
 }
 }

 // set subsequent movement in direction of nearest item
 if(nearestEntity != null)
 {
 tempOrigin = nearestEntity.getOrigin();
 entPos.set(tempOrigin.getX(), tempOrigin.getY(), 0);

 tempOrigin = player.getPlayerMove().getOrigin();
 pos.set(tempOrigin.getX(), tempOrigin.getY(), 0);

 entDir.sub(entPos, pos);
 entDir.normalize();

 setBotMovement(entDir, null, 200, 0); // set movement dir
 }
 }

function [] = SampleBotManagerGeneral(botTime, recordFile)

 prepQASE; % import the QASE library

 try
 matLabBot = MatLabGeneralPollingBot('MatLabGeneralPolling','female/athena');
 matLabBot.connect('127.0.0.1',-1,recordFile);

 pos = [];
 entPos = [];
 entDir = [];
 entDirVect = soc.qase.tools.vecmath.Vector3f(0,0,0);

 tic;

 while(toc < botTime)
 if(matLabBot.waitingForMatLab == 1)
 world = matLabBot.getWorld;

 tempEntity = [];
 nearestEntity = [];
 nearestEntityIndex = -1;
 entDist = 1e10;

 tempOrigin = [];

 player = world.getPlayer;
 entities = world.getItems;
 messages = world.getMessages;

 matLabBot.setAction(0, 0, 0);

 for j = 0 : entities.size - 1
 tempEntity = entities.elementAt(j);

 tempOrigin = tempEntity.getOrigin;
 entPos = [tempOrigin.getX ; tempOrigin.getY];

 tempOrigin = player.getPlayerMove.getOrigin;
 pos = [tempOrigin.getX ; tempOrigin.getY];

 entDir = entPos - pos;

 if((j == 0 | norm(entDir) < entDist) & norm(entDir) > 0)
 nearestEntityIndex = j;
 entDist = norm(entDir);
 end
 end

 if(nearestEntityIndex ~= -1)
 nearestEntity = entities.elementAt(nearestEntityIndex);

 tempOrigin = nearestEntity.getOrigin;
 entPos = [tempOrigin.getX ; tempOrigin.getY];

 tempOrigin = player.getPlayerMove.getOrigin;
 pos = [tempOrigin.getX ; tempOrigin.getY];

 entDir = entPos - pos;
 entDir = normc(entDir);

 entDirVect.set(entDir(1, 1), entDir(2,1), 0);

 matLabBot.setBotMovement(entDirVect, entDirVect, 200, 0);
 end

 matLabBot.releaseFromMatLab;
 end

 pause(0.01);
 end
 catch
 disp 'An error occurred. Disconnecting bots...';
 end

 matLabBot.disconnect;
end

Figure 15 - SampleBotManagerGeneral.m. This direct MatLab agent closely parallels the
SampleObserverBot.java source shown above. MatLab is responsible for obtaining the gamestate
(matLabBot.getWorld), querying it to extract the required information, performing the necessary
computations, and manually setting the agent’s subsequent actions (setBotMovement).

% botTime specifies the bot's lifetime in seconds
function [] = BotManagerTemplate(botTime, recordFile)
 prepQASE; % import the QASE library

 mlResults = cell(1, 1); % allocate a cell array to contain MatLab's results

 try
 % create and connect the bot - can be either built-in or custom
 matLabBot = SampleMatLabObserverBot('MatLabObserver','female/athena');
 matLabBot.connect('127.0.0.1',-1,recordFile);

 tic;

 % loop for the specified amount of time
 while(toc < botTime)
 if(matLabBot.waitingForMatLab == 1)
 mlParams = matLabBot.getMatLabParams;

 % app-dependent computations here %
 % place results in mlResults cell array %

 matLabBot.setMatLabResults(mlResults);

 matLabBot.releaseFromMatLab;
 end

 pause(0.01);
 end
 catch
 disp 'An error occurred. Disconnecting bots...';
 end

Figure 16 - The BotManagerTemplate.m hybrid agent script. Users need only specify the size of the
mlResults cell array (ie number of outputs) and the app-dependent computations as indicated.

function [] = SampleBotManager(botTime, recordFile)

 prepQASE; % import the QASE library

 mlResults = cell(1, 1);

 try
 matLabBot = SampleMatLabObserverBot('MatLabObserver','female/athena');
 matLabBot.connect('127.0.0.1',-1,recordFile);

 tic;

 while(toc < botTime)
 if(matLabBot.waitingForMatLab == 1)
 mlParams = matLabBot.getMatLabParams;

 pos = mlParams(1);
 entPos = mlParams(2);
 dir = normc(entPos - pos);

 mlResults{1} = dir;

 matLabBot.setMatLabResults(mlResults);

 matLabBot.releaseFromMatLab;
 end

 pause(0.01);
 end
 catch
 disp 'An error occurred. Disconnecting bots...';
 end

 matLabBot.disconnect;
end

Figure 17 - The SampleBotManager.m script, an example of a hybrid agent script. Input consists of the
position of the agent and that of the nearest item, each in the form of a float array. Output is the direction the
agent needs to move, in the form of a MatLab cell array (which is auto-converted into an array of Java
objects). As can be seen, separating Java and MatLab processing using hybrid agents results in clear,
efficient and highly intelligible code.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

