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ABSTRACT 
 

Computer games have belatedly come to the fore as a serious 
platform for AI research. Through our own experiments in 
the fields of imitation learning and intelligent agents, it 
became clear that the lack of a unified, powerful yet intuitive 
API was a serious impediment to the adoption of commercial 
games in both research and education. Parallel to our own 
specialised work, we therefore decided to develop a general-
purpose library for the creation of game agents, in the hope 
that the availability of such software would help stimulate 
further interest in the field. Though geared towards machine-
learning, the API would be flexible enough to facilitate 
multiple forms of artificial intelligence, making it suitable 
for application in research and in undergraduate courses 
centring upon traditional AI and agent-based systems. 
 
In this paper, we present the result of our efforts; the Quake 
2 Agent Simulation Environment (QASE) API. We first 
describe the theme of our work, the reasons for choosing 
Quake 2 as our testbed, and the necessity for an API of this 
nature. We then outline its most important features, before 
comparing QASE against other game-based artificial 
intelligence APIs. A presentation of some experiments from 
our own research demonstrating QASE’s practical 
capabilities closes this contribution. 
 
INTRODUCTION 
 

In recent years, commercial computer games have gained 
increasing recognition as an ideal platform for research in 
various fields of artificial intelligence (Laird & van Lent, 
2000; Naraeyek 2004). The vast majority, however, still 
utilize AI techniques that were developed several decades 
ago, and which often produce mechanical, repetitive and 
unsatisfying game agents. Given that games provide a 
convenient means of recording the complex, fluent 
behaviors of human players, some researchers (Sklar et al 
1999; Bauckhage et al 2003; Thurau et al 2004) have 
speculated that approaches based on the analysis and 
imitation of human demonstrations may produce more 
challenging and believable artificial agents than can be 
realised using traditional techniques; indeed, imitation 
learning is already employed quite extensively in the 
robotics community (Atkeson & Schaal 1997, Schaal 1999, 
Jenkins & Mataric 2000). Building upon this premise, the 

primary focus of our work lies in investigating imitation 
learning in games which involve cognitive agents. 
 

In the initial stages of our research, however, it became clear 
that the available testbeds and resources were often 
scattered, frequently incomplete, and generally ad hoc. 
Existing APIs were unintuitive, unreliable and lacking in 
functionality. Network protocol and file format 
specifications were usually unofficial, more often than not 
the result of reverse-engineering by adventurous fans 
(Girlich 2000). Documentation was sketchy, with even the 
most rudimentary information spread across several disjoint 
sources. Above all, it was evident that the absence of a 
unified, low-level yet easy-to-use development platform and 
experimental testbed was a major impediment to the 
adoption of commercial games in both academic research 
and education. 

As a result, we decided to adopt a two-track approach. We 
would develop approaches to imitation learning in games, 
while simultaneously building a comprehensive 
programming interface designed to provide all the 
functionality necessary for others to engage in this work. 
This interface should be powerful enough to facilitate high-
end research, while at the same time being suitable for use in 
undergraduate courses geared towards classic AI and agent-
based systems. 
 
Choosing a Testbed - Quake 2 
 

Our first task was to decide which game to use as a testbed. 
We opted to investigate the first-person shooter genre, in 
which players control a single character exploring a three-
dimensional environment littered with weapons, bonus 
items, traps and pitfalls, with the objective of defeating as 
many opponents as possible within a predetermined time 
limit. This particular genre was chosen in preference to 
others due to the fact that it provides a comparatively direct 
mapping of human decisions onto agent actions; this is in 
contrast to many other game types, where the agent’s 
behaviours are determined in large part by factors other than 
the player’s decision-making process. In real-time strategy 
games, for instance, the player typically controls a large 
number of units, directing them in various scheduling and 
resource management tasks; although the player is 
responsible for, say, instructing his followers to engage in 
battle against an enemy faction, the specifics of how the 
confrontation unfolds is handled on a per-unit basis by the 
game’s AI routines.  In sports simulations, only a single 
character is usually under the control of the human player - 
the interactions of his teammates are managed from one 



 

timestep to the next by the computer. In adventure games, 
imitating human performance would first require an AI 
capable of visually recognising everyday objects and 
comprehending their significance, as well as an ability to 
understand and partake in conversations with other 
characters; this prerequisite level of common-sense 
reasoning makes the genre infeasible for imitation purposes, 
at least at present. While other genres do offer many 
interesting challenges for AI research, as outlined by both 
(Laird 2001) and (Fairclough et al 2001), the attraction of 
first-person shooters - to researchers and gamers alike - lies 
in the minimal degree of abstraction they impose between 
the human player and his/her virtual avatar. The same 
qualities make them ideal for use in undergraduate courses; 
the student creates the AI for a single agent, which can then 
be deployed against those written by others. 

 

With this in mind, we chose ID Software’s Quake 2 as our 
test environment - it was prominent in the literature, existing 
resources were more substantial than for other games, and 
thanks to Laird it had become the de facto standard for 
research of this nature. While subsequent first-person 
shooter games have boasted faster gameply and more 
advanced visuals, the core features of the genre - those 
elements which are of particular interest to AI researchers, as 
outlined above - are as well-represented in Quake 2 as in its 
descendants. Figure 1 shows a typical environment and 
features. 
 
THE QASE API 
 

 The Quake 2 Agent Simulation Environment was created 
to meet the requirements identified earlier; namely, it is a 
fully-featured, integrated API, designed to be as intuitive, 

modular and transparent as possible. It is Java-based, 
ensuring an easily extensible object-oriented architecture 
and allowing it to be deployed on different hardware 
platforms and operating systems. It amalgamates and 
improves upon the functionalities of several existing 
applications, removing the need to rely on ad-hoc software 
combinations or to comb through a multitude of different 
documentations; QASE consolidates all relevant information 
into a single source. It is geared towards machine and 
imitation learning, but is equally appropriate for use with 
more traditional forms of agent-based AI. Put simply, QASE 
is intended to provide all the functionality the researcher or 
student will require in their experiments with cognitive 
agents in first-person games. 

In the following sections we will outline the major 
components of the QASE architecture, highlighting its 
potential for application in both research and education. 
 

Network Layer 
 

Quake 2’s multi-player mode is a simple client-server model. 
One player starts a server and other combatants connect to it, 
entering whatever environment (known as a map) the 
instigating player has selected. Every hundred milliseconds, 
the server transmits an update frame to all connected clients, 
containing information about the game world and the status 
of each entity; each client merges the update into its existing 
gamestate record, and then responds by sending its desired 
movement, aiming and action data back to the server. Some 
complexity is introduced due to the fact that the client and 
server interpret positional and orientation data differently. 
From the server’s perspective, the forward velocity 
corresponds to velocity along the global x-axis, right 
velocity is velocity along the global y-axis, and angular 
measurements are absolute. From the client’s perspective, 
the forward velocity is velocity in the direction the agent is 
currently facing, the right velocity is perpendicular to this, 
and the angular measurements are relative to the agent’s 
local axes. Thus, in order to realize artificial agents (also 
known as bots), a means of handling the game’s network 
traffic and translating smoothly between global server data 
and local client data is required. 

QASE accomplishes this via its Proxy class, which 
encapsulates an implementation of the Quake 2 client-side 
network protocol. It is responsible for establishing game 
sessions with the server, receiving inbound data and 
converting it into a human-readable format, and transmitting 
the agent’s subsequent actions back to the server, as shown 
in Figure 2. Synchronisation is employed to ensure the 
consistency of the gamestate across any parallel threads. All 
this is implemented transparently to the agent; at each 
interval, the bot is simply notified that an update has 
occurred, and receives a World object containing a hierarchy 
of component objects representing the current gamestate. 
 

 An important point to note is that, because the network 
layer is separated from the higher-level classes in the QASE 
architecture, it is highly portable. Adapting the QASE API 
to games with similar network protocols, such as Quake 3 
and its derivatives, therefore becomes a relatively 
straightforward exercise; by extending the existing classes 
and rewriting the data-handling routines, they could 

 
Figure 1 - Typical Quake 2 environment 

 

 
Figure 2 -  The QASE API and its role in realising Quake agents 



 

Bot 
interface 

BasicBot 
abstract 

ObserverBot 
abstract 

PollingBot 
abstract 

MatLabObserverBot 
abstract 

NoClipBot 
abstract 

MatLabPollingBot 
abstract 

MatLabGeneralObserverBot 
concrete final 

MatLabNoClipBot 
abstract 

MatLabGeneralPollingBot 
concrete final 

MatLabNoClipGeneralBot 
concrete final 

Figure 3 - The complete QASE Bot Hierarchy

conceivably be adapted to any UDP-based network game. 
Thus, QASE’s network structures can be seen as providing a 
template for the development of artificial game clients in 
general. 

Gamestate Augmentation 
 

Rather than simply providing a bare-bones implementation 
of the client-side protocol, QASE also performs several 
behind-the-scenes operations upon receipt of each update, 
designed to present an augmented view of the gamestate to 
the agent. In other words, QASE transparently analyses the 
information it receives, makes deductions based on what it 
finds, and exposes the results to the agent. As such, it may 
be seen as representing a virtual extension of the standard 
Quake 2 network protocol. 
 
For instance, the standard protocol has no explicit item 
pickup notification; when the agent collects an object, the 
server takes note of it but does not send a confirmation 
message to the client, since under normal circumstances the 
human player will be able to identify the item visually. 
QASE compensates for this by detecting the sound of an 
item pickup, examining which entities have just become 
inactive, finding the closest such entity to the player, and 
thereby deducing the entity number, type and inventory 
index of the newly-acquired item. Building on this, QASE 
records a full list of which items the player has collected and 
when they are due to respawn (reappear), automatically 
flagging the agent whenever such an event occurs. 
 
Similarly, recordings of Quake 2 matches (see below) do not 
encode the full inventory of the player at each timestep - that 
is, the list of how many of which items the player is 
currently carrying. For research models which require 
knowledge of the inventory, such as that outlined in the 
QASE and Imitation Learning section below, this is a major 
drawback. QASE circumvents the problem by monitoring 
item pickups and weapon discharges on each frame, thereby 
building an inventory representation in real-time. This can 
also be used to track the agent’s inventory in online game 
sessions, removing the need to explicitly request a full 
inventory listing from the server on each update. 

Team-Based Play 
 

QASE is fully compatible with the Threewave CTF 
modification for Quake 2, in which players join either a Red 
or Blue team and attempt to capture the enemy faction’s flag. 
Methods are provided which enable the agent to join a 
specific team, or to join randomly; further methods allow the 
agent to determine whether a particular player is a member 
of its own or the opposing group. In cases where the server 
type is not known in advance, the API will automatically 
determine the game mode, and if necessary will join an 
arbitrary team. QASE is, therefore, well suited to researchers 
whose interest lies in investigating team-based behaviours 
and interactions. 
 
Bot Hierarchy 
 
While the network layer and gamestate-handling features 
described above are technically enough to facilitate the 
creation of in-game agents, they operate at too low a level to 
be practical for general use; they do not represent a rigorous, 
structured framework for the creation of Quake bots. Rather 
than requiring users to write agents from scratch and to 
manually handle the more menial aspects of client-server 
administration, QASE implements a structured hierarchy of 
bot classes, allowing rapid prototyping and development of 
agents from varying levels of abstraction. These range from 
a simple interface class, to full-fledged bots incorporating an 
exhaustive range of user-accessible functions. The bot 
hierarchy comprises three major levels; these are 
summarised below. 
 
Bot 
A template which specifies a well-defined, standardised 
interface to which all agents must conform, but does not 
provide any further functionality; the programmer is entirely 
responsible for the actual implementation of the bot, and 
may do so in any way (s)he chooses. 
 
BasicBot 
An abstract bot which provides most of the functionality 
required by Quake 2 agents, such as the ability to determine 



 

whether the bot has died, to respawn (re-enter the game) 
after the agent has been defeated, to create an agent given 
minimal profile information, to set the agent’s movement 
direction, speed and aim and send these to the server, to 
obtain sensory information about the virtual world, and to 
record itself to a demo file. All that is required of the 
programmer is to extend the class, write the AI routine in the 
predefined runAI method, and to supply a means of 
handling the server traffic according to whatever interaction 
paradigm (s)he wishes to use. The third level of the bot 
hierarchy provides ready-to-use implementations of two 
such paradigms (see below). 

BasicBot also provides tailored, transparent access to the 
functions of the BSPParser class for environment sensing 
and the WaypointMap class for navigation (see later), by 
incorporating methods which relay calls to the appropriate 
embedded object. Users can also obtain a pointer to the 
underlying objects, thereby allowing full access to their 
functionality. Certain parameters are pre-defined to the most 
useful values; for instance, the bounding box used to trace 
through the level by the BSPParser is set to the size of the 
agent's in-game character's bounding box. BasicBot will 
also transparently find, load and query the BSP file 
associated with the current game level when one of the 
environment-sensing methods is invoked for the first time. 
Naturally, all these facilities are inherited by classes further 
down the bot hierarchy. 
 

ObserverBot and PollingBot 
The highest level of the Bot hierarchy consists of two 
classes, ObserverBot and PollingBot, which 
represent fully-realised agents. Each of these provides a 
means of detecting changes to the gamestate as indicated by 
their names, as well as a single point of insertion - the 
programmer needs only to supply the AI routine in the 
runAI method defined by the Bot interface. Thus, the 
agent is notified of each update as it occurs, a copy of the 
gamestate is presented to it, the user-defined AI routines set 
the required movement, aiming and action values for the 
next update, and the API auto-transmits the changes. 

The ObserverBot uses the observer pattern to register its 
interest with the observable Proxy, and is thereafter notified 
whenever a game update takes place. Since this approach is 
single-threaded, a separate thread is created to check 
whether the bot has been killed, and to respawn as 
necessary. The advantages of this approach are twofold: 
 
• it guarantees consistency of the gamestate; since the 

Proxy thread invokes a method call in the ObserverBot, 
it must wait until the agent’s AI routine is complete 
before receiving any further updates. 

 

• it allows multiple observers to connect to a single 
Proxy. This can be useful if the programmer wishes, 
for instance, to have a second observer perform some 
operation on the incoming data in the background. 

 

The PollingBot, as its name suggests, operates by 
continually polling the Proxy and obtaining a copy of the 
gamestate World object. If a change in the current frame 
number is detected, the agent knows that an update has 

occurred, and will enter its AI routine. Because the Proxy 
and agent are operating on separate threads, the Proxy is free 
to receive updates regardless of what the agent is currently 
doing; this multithreaded approach may improve 
performance slightly, but could potentially result in changes 
to the gamestate arriving while the agent is executing its AI 
cycle, if said cycle is excessively long. To prevent this, the 
bot can optionally be set to high thread safety mode, in 
which the agent and Proxy both synchronize on the 
gamestate object; this means that the agent cannot read the 
gamestate while it is being written, and the Proxy cannot 
write the gamestate while it is being read. 
 

Miscellaneous Bots 
Beyond this, several convenience classes are available, 
which provide extended bot implementations tailored to 
specific purposes. The NoClipBots allow the user to 
‘noclip’ the agent (i.e. move it through otherwise solid 
walls) to any arbitrary point in the environment before 
starting the simulation, which we have found to be extremely 
useful in the course of our own research - indeed, the bot 
category was added specifically to address our need for such 
functionality. The MatLabBot branches facilitate integration 
with the MatLab programming environment, and will be 
explained later. The full hierarchy is shown in Figure 3. 
 

The DM2 Parser and Recorder 
 

Quake 2’s inbuilt client, used by human players to connect 
to the game server, facilitates the recording of matches from 
the perspective of each individual player. These demo or 
DM2 files are organised into blocks, each of which consists 
of a series of concatenated messages representing the 
network packet stream received by the client during the 
game session; the demo file therefore captures the player’s 
every action and the state of all game entities at each discrete 
time step. For our own investigations in the field of imitation 
learning, a means of parsing these files and extracting the 
gameplay samples is essential. QASE’s DM2Parser fulfils 
this requirement. 
 

The DM2Parser treats the demo file as a virtual server, 
“connecting” to it and reading blocks of data in exactly the 
same manner as it receives network packets during an online 
game session. A copy of the gamestate is returned for each 
recorded frame, and the programmer may query it to retrieve 
whatever information (s)he requires.  

For examples of the type of data that can be obtained and 
analysed, see the sections MatLab Integration and QASE 
and Imitation Learning below. 
 

Furthermore, QASE incorporates a DM2Recorder, allowing 
the agent to automatically record a demo of itself during 
play; this actually improves upon Quake 2’s standard 
recording facilities, by allowing demos spanning multiple 
maps to be recorded in playable format. QASE accomplishes 
this by separating the header information received when 
entering each new level from the stream of standard packets 
received during the course of the game. The incoming 
network stream is sampled, edited as necessary, and saved to 
file when the agent disconnects from the server or as an 
intermediate step whenever the map is changed. 



 

Environment Sensing 
 
The network packets received by game clients from the 
Quake 2 server do not encode any information about the 
actual environment in which the agent finds itself, beyond its 
current state and those of the various game entities present. 
This information is contained in Binary Space Partition 
(BSP) files stored locally on each client machine; thus, in 
order to provide the bot with more detailed sensory 
information (such as determining its proximity to an 
obstacle, or whether an enemy is visible), a means of 
locating, parsing and querying these map files is required. 
QASE’s BSPParser and PAKParser fulfil this need. 
 
The BSP file corresponding to the active map in the current 
game session may be stored in the default game directory, a 
custom game directory, or in any of Quake 2’s PAK 
archives; its filename may or may not match the name of the 
map, which is the only information possessed by the client. 
If the user sets an environment variable pointing to the 
location of the base Quake 2 folder, QASE can automatically 
find the relevant BSP by searching each location in order of 
likelihood. This is done transparently from the agent’s 
perspective; as soon as any environment-sensing method is 
invoked, the map is silently located, loaded and queried. 
 
Once loaded, the BSPParser can be used to sweep a line, 
box or sphere in any arbitrary direction through the game 
world, starting from the agent’s current location; the distance 
and/or position at which the first collision with the 
environment’s geometry occurs is returned. This allows the 
agent to “perceive” the world around it on a pseudo-visual 
level - line traces can be used to determine whether entities 
are visible from the agent’s perspective, sphere traces can be 
used to check whether projectiles will reach a certain point if 
fired, and box traces can be used to determine whether the 
agent’s in-game model will fit through an opening. Figure 4 
below shows the operation of each different trace type. 
 
Environmental Entity Parsing 
 
 Aside from pure geometric data, the BSP files also contain 
information about certain active features within the game 
environment. These entities, which include doors, lifts, 
teleporters and buttons, should not be confused with the 
entity information received from the server on each update, 
which relates primarily to player movements and weapon 
spawns / despawns. The QASE API transparently parses and 
extracts the details of all such entities upon the first BSP 

query, and performs additional processing in order to allow 
the resulting data to be queried from high-level contexts. For 
instance, graph-style edge links are created between 
teleporters and their destination portals, while methods 
within the BasicBot class can be used to easily determine 
whether the player is currently standing on a moving 
platform. 
 
Inbuilt AI Constructs 
 
For education purposes, QASE incorporates 
implementations of both a neural network and a genetic 
algorithm generator. These are designed to be used in 
tandem - that is, the genetic algorithms gradually cause the 
neural network’s weights to evolve towards a given fitness 
function. The main classes involved in this process are: 
 
NeuralNet 
Builds the network given design parameters, controls the 
retrieval and updating of its weights, facilitates output using 
logsig or tansig functions, and computes the net's output for 
given input. Also allows the network to be saved to disk and 
loaded at a later time. 
 
Genetic 
The genetic algorithm generator class, which maintains the 
gene pool, records fitness stats, controls mutation and 
recombination, and generates each successive generation 
when prompted. The class also provides methods to save and 
load Genetic objects,  thereby allowing the genetic algorithm 
process to be resumed rather than restarted. 
 
GANNManager 
Provides the basic template of a 'bridge' between the GA and 
ANN classes, and demonstrates the steps required to evolve 
the weights of a population of networks by treating each 
weight as a nucleotide in the GA's genome. The class 
provides two modes of operation. For offline experiments - 
that is, those performed outside a live Quake 2 match - the 
GANNManager can be run as a thread, continually assessing 
the fitness of each network according to a user-defined 
function, recombining the associated genomes, and evolving 
towards an optimal solution for a specified duration of each 
generation and of overall simulation time. For online 
experiments, the class can be attached as an Observer of one 
or more Proxy objects, providing direct feedback from the 
Quake 2 game world. The class is abstract; it must be 
subclassed to provide the necessary fitness and observer 
functions, and to tailor its operation to the specific problem  

 

 
 

Figure 4 - BSP traces with line, sphere and box. Collision occurs at different points. 



 

at hand. The class also allows the user to save an entire 
simulation to disk, and resume it from the same point later. 
 
A k-means calculator class is also included; aside from 
serving as an illustration of clustering techniques, it is also 
used in QASE’s waypoint map generator (see below). These 
features are intended primarily to allow students to 
experiment with some AI constructs commonly found in 
undergraduate curricula - for more demanding research 
applications, QASE allows MatLab to be used as a back-end. 
 
Waypoint Maps 
 
One of QASE’s most useful features, particularly from an 
educational point of view, is the aforementioned waypoint 
map generator. The most important requirement of any 
agent is that it be capable of negotiating its environment. 
Although this can be done using the environment-sensing 
facilities outlined above, to rely exclusively upon BSP 
tracing would be a rather cumbersome and computationally 
expensive solution; most traditional methods of navigation 
instead employ waypoint maps - topological graphs of the 
level, indicating the paths along which the agent can move. 
With this in mind, QASE provides a package, 
soc.ai.waypoint, specifically designed to facilitate the 
rapid construction of such maps. 

 
While the two principal classes of this package, Waypoint 
and WaypointMap, can be used to manually build a topology 
graph from scratch, QASE also offers a far more elegant and 
efficient approach to the problem - the 
WaypointMapGenerator. Drawing on concepts 
developed  in  the course of our  work  in  imitation  
learning, this simply requires the user to supply a pre-
recorded DM2 file; it will then automatically find the set of 
all positions occupied by the player during the game session, 
cluster them using the inbuilt k-means classes to produce a 
smaller number of indicative waypoints, and draw edges 
between these waypoints based on the observed movement 
of the demonstrator. The items collected by the player are 
also recorded, and Floyd’s algorithm (Floyd, 1962) is 
applied to find the matrix of distances between each pair of 
points. The map returned to the user at the end of the process 
can thus be queried to find the shortest path from the agent’s 
current position to any needed item, to the nearest opponent, 
or to any random point in the level. Rather than manually 
building a waypoint map from scratch, then, all the student 
need do in order to create a full navigation system for their 
agent is to record themselves moving around the 

environment as necessary, collect whatever items their bots 
require, and present the resulting demo file to QASE. 
 
The waypoint map functionality is embedded into the 
BasicBot class; that is, it provides shortest-path methods 
which the agent transparently passes on to an underlying 
WaypointMap object. The ability to retrieve the map as 
raw positional and edge data is also provided; this is 
particularly convenient for reading the map into MatLab, as 
shown in Figure 5. Additionally, WaypointMap permits 
instances of itself to be saved to disk and reloaded, thereby 
enabling users to generate a map once and use it in all 
subsequent sessions rather than recreating it each time.  
 

MatLab Integration 
 
For the purposes of our work in imitation learning, we need 
a way to not only obtain, but also statistically analyse the 
observed in-game actions of human players. Rather than 
hand-coding the required structures from scratch, we opted 
instead to integrate the API with the Mathworks™ MatLab® 
programming environment. Given that it provides a rich set 
of built-in toolboxes for neural computation, clustering and 
other classification techniques and is already widely used in 
research, MatLab seemed an ideal choice to act as an 
optional back-end for QASE agents. 
 
Bots can be instantiated and controlled via MatLab in one of 
two ways. For simple AI routines, one of the standalone 
MatLabGeneralBots shown in Figure 3 is sufficient. A 
MatLab function is written which creates an instance of the 
agent, connects it to the server, and accesses the gamestate at 

 

Figure 5 - Map of an in-game environment, created using 
WaypointMapGenerator, exported to and visualised in 
MatLab. 

 

 
Figure 6 - MatLab/QASE integration. MatLab acts as a back-end in the AI cycle; the agent’s body and brain are separated 



 

each update, all entirely within the MatLab environment. 
The advantage of this approach is that it is intuitive and very 
straightforward; a template of the MatLab script is provided 
with the QASE API. We refer to agents created in this way 
as direct MatLab agents. 
 
In cases where a large amount of gamestate and data 
processing must be carried out on each frame, however, 
handling it exclusively through MatLab can prove quite 
inefficient; for this reason, we developed an alternative 
paradigm designed to offer far better performance. As 
outlined in the Bot Hierarchy section above, QASE agents 
are usually created by extending either the ObserverBot 
or PollingBot classes, and overloading the runAI 
method in order to add the required behaviour. In other 
words, the agent’s AI routines are atomic, and encapsulated 
entirely within the derived class. Thus, in order to facilitate 
MatLab’s insertion into the AI cycle, a new branch of what 
we refer to as hybrid agents - the MatLabBots - was 
created. Each of these possesses a three-step AI routine: 
 
1. On each server update, the custom QASE agent first 

pre-processes the data required for the task at hand; it 
then (automatically) flags MatLab to take over control 
of the AI cycle. 
 

2. The MatLab function obtains the agent’s input data, 
processes it using its own internal structures, passes the 
results back to the agent, and signals that the agent 
should reassume control. 

 
3. This done, the bot applies MatLab’s output in a 

postprocessing step. 
 
This framework is already built into QASE’s MatLabBots; 
the programmer need only extend MatLabObserver / 
Polling / NoClipBot to define the handling of data in 
the pre-processing and postprocessing steps, and change the 
accompanying MatLab script as necessary. By separating the 
agent’s body (QASE) from its brain (MatLab) in this 
manner, we ensure that both are modular and reusable, and 
that cross-environment communications are minimised. The 
pre-processing step filters the gamestate, presenting only the 
minimal required information to MatLab; QASE thus 
enables both MatLab and Java to process as much data as 
possible in their respective native environments. This has 
proven extremely effective, both in terms of computational 
efficiency and ease of development. 
 
Aside from creating game agents, MatLab can also use the 
various supporting functions of the QASE API. From our 
perspective, one of the most important of these is the ability 
to read and process demonstrations of gameplay using the 
DM2Parser. Figure 5 shows an example of this, using the 
WaypointMapGenerator in conjunction with 
DM2Parser to create a map of the game environment from 
human demonstration; see the section QASE and Imitation 
Learning for more. 
 
Of course, the fact that we integrated QASE with MatLab 
specifically to facilitate our work in imitation learning does 
not diminish its potential for use in other areas; QASE is 
designed for broad AI research, and the ability to build a 

back-end using MatLab - a tool with which researchers are 
already intimately familiar - is ideally suited to this purpose. 
 

QASE AND OTHER APIs 
 

During the initial exploratory phase of our research, we 
investigated a number of candidate APIs, originally 
intending to adopt one of them for use in our own 
experiments; as mentioned earlier, we were not satisfied that 
any of them provided the tools we would ultimately need. 
Here, we discuss these APIs. While each has some positive 
elements, we explain why in each case we felt that they fell 
short of our ideal platform, and in what ways we designed 
QASE to be a preferable alternative. 
 
Quake 2 Bot Core 
One of the earliest attempts to facilitate bot programming in 
Quake 2, the Bot Core (Swartzlander 1999) comprises an 
implementation of the game’s client-side network protocol 
written in pure C, together with a very basic template for 
creating an AI cycle. It soon became apparent that it was a 
less than ideal platform for our work; parts of the network 
protocol had been neglected, other parts were not 
functioning reliably, it required that each agent be compiled 
into a separate executable, and its potential extensibility was 
extremely limited, making it an unsuitable choice for high-
end research applications in general. 
 
GameBots 
The GameBots project (Adobbati et al 2001) allows 
communication between Epic Games’ Unreal Tournament 
and other software, channelling messages to and from the 
server via a socket interface. Messages are both sent and 
delivered as ASCII strings, adhering to a predefined format. 
While this allows a wide range of programs to interface with 
the server, it is a bare-bones system; the user must write his 
own parser for the game messages, there are no supporting 
AI structures or logic included in the API, and 
communication is handled exclusively through scripting, 
with no low-level access available. Additionally, the socket 
interface which exposes the gamestate to external control is 
implemented via a modified version of the game server; it is 
therefore not possible to create an agent and connect it to an 
arbitrary Unreal Tournament match - agents can only 
communicate with a server running the GameBots mod. 
 
Quagents 
The Quagents project (Brown et al 2005) is intended 
primarily to propose Quake as a virtual testbed for robot and 
“ant colony”-style agent simulations. Its approach is quite 
similar to that of the GameBots API described above; 
Quagents is a recompiled modification of the Quake 2 
libraries, which exposes the internal workings of the game to 
external manipulation via predefined script commands. 
Again like GameBots, the implementation of the actual agent 
controller itself is left to the user, although a sample 
application allowing for real-time control of the bot is 
supplied. However, Quagents also modifies the content of 
the game itself, implementing a stripped-down version of the 
original by eliminating many items, simplifying the agent’s 
movement functions, and reducing the interactivity of the 
bot with the game world (Quagents, for instance, cannot 
engage in combat against each other). 



 

In the case of both GameBots and Quagents APIs, their 
respective constraints - the elimination of features present in 
the original game, the limitations imposed by requiring the 
server to have the relevant modification installed, the lack of 
supporting structures and functionality - were among the 
primary reasons for our ultimate decision to reject them as 
viable candidate platforms for our reseach. 
 
FEAR SDK 
The most mature of the pre-existing first-person shooter 
APIs we investigated, FEAR (Champandard 2002) is once 
again a modification of the game’s shared libraries; unlike 
GameBots and Quagents, however, FEAR also provides a 
framework for creating the agent controller itself. These 
must be compiled as DLLs and placed in appropriate 
subdirectories under the main FEAR mod folder; bots are 
then deployed by issuing commands from the server console 
during a game session. This has the drawback, however, of 
requiring not only that the server be running FEAR - as with 
GameBots and Quagents - but that the code for all desired 
agents be present on the same machine when the game 
session begins. If, for instance, multiple researches from 
different institutes wish to compare their agents, they cannot 
simply connect to a common server and deploy them. FEAR 
also includes a variety of in-built AI structures, including 
FSAs, decision trees, neural networks and rule-based 
systems. While such features are welcome, we felt that the 
inability (or at least, significant difficulty) of allowing 
external processing during the agent’s AI cycle was quite 
limiting. MatLab, for instance, provides a vastly greater 
range of functionality than that embedded within FEAR, and 
is already a familiar working environment for many 
researchers. The SDK is also quite unintuitive in certain 
respects, which attenuates its utility as an educational aid. 
Moreover, the fact that the SDK is inextricably linked to the 
game engine renders it incompatible with other mods, such 
as the CTF team-based modification described earlier, unless 
the user were to manually subsume the CTF code into 
FEAR. 
 
TIELT 
The Testbed for Integrating and Evaluating Learning 
Techniques (Molineaux & Aha 2005) is a middleware 
platform designed to act as a generic intermediary between 
game engines and decision systems, somewhat similar to 
QASE’s MatLab integration architecture as described 
earlier. For each game, users employ TIELT’s inbuilt editor 
and scripting language to develop a series of knowledge 
bases; these consist of XML files defining elements such as 
the objects contained in the gamestate, events that may 
occur, state transition rules, messaging formats for 
communication with the game server and decision system, 
etc. The majority of applications have thus far centred upon 
real-time strategy games, although a bot has also been 
created for Unreal Tournament as proof-of-concept. While 
TIELT is an excellent general-purpose tool for research 
across different games, it is by necessity removed from the 
low-level details of each; we felt that our work - and that of 
other groups interested in pursuing research in first-person 
shooter games - would be better served by a consolidated 
API with a wide range of inbuilt functionality. Had we 
adopted TIELT for the purposes of interfacing our decision 

systems with Quake 2, we would have needed to write 
separate packages for reading human behaviour data from 
demo files, dealing with BSP geometry and environmental 
entities like lifts and doors, constructing navigation graphs, 
and so forth; this would have resulted in precisely the kind 
of ad-hoc, non-reusable amalgamation of software that we 
wished to avoid. 
 
QASE: OUR APPROACH  
Having examined the platforms outlined above, we 
concluded that none provided the combination of simplicity, 
power, modularity, reusability and extensibility that an 
educational and research tool of this kind required. We felt, 
as noted earlier, that the lack of such a platform was a major 
impediment to the adoption of first-person games in both 
areas, and sought to remedy this; it was always our main 
priority that the API be designed for the widest possible 
range of applications, rather than constraining itself to the 
specific needs of our own work. As such, QASE 
incorporates not only solutions to the various hurdles we 
encountered in the course of our research, but all the features 
which occurred to us as being potentially beneficial for 
others. Written in Java, the API itself consists of a single 
~160kb JAR library, which can run unmodified on any JRE-
enabled machine. As detailed elsewhere, it permits low-level 
access to gamestate and environmental information for those 
who want it, while also supplying high-level interfaces and 
convenience functions which perform the necessary 
gamestate-handling tasks transparently. It provides 
illustrative built-in AI structures for educational purposes, 
and facilities both the automatic generation and manual 
construction of full navigational systems. Its efficient and 
flexible MatLab integration provides an extremely powerful 
back-end engine with which researches are already 
intimately familiar. Unlike the approaches adopted by 
several of the APIs described above, its network layer 
encapsulates a full client-side implementation of the Quake 2 
network protocol, meaning that it is cleanly decoupled from 
the server implementation; a QASE agent can connect to and 
be deployed upon any arbitrary Quake 2 server, Windows or 
Linux, modified or otherwise. It comes with full, detailed 
documentation and a series of articles focussing on the 
network protocol, the BSP file structure, and other subjects 
which will be of use to researchers embarking upon work in 
this area. Finally, it is worth noting that QASE is still in 
active development, and is evolving in response to the 
comments of groups and individuals who have adopted it; 
the other APIs mentioned above, with the exception of 
TIELT, are no longer maintained. 
 
QASE AND IMITATION LEARNING 
 
In this section, we outline an experiment conducted in the 
course of our work. While it by no means demonstrates the 
full extent of QASE’s faculties, this example does provide a 
good indication of its potential in the field of research. The 
following is drawn from our papers “Towards Integrated 
Imitation of Strategic Planning and Motion Modelling in 
Interactive Computer Games” (Gorman & Humphrys 2005) 
and “Believability Testing and Bayesian Imitation in 
Interactive Computer Games” (Gorman et al 2006). 



 

One of the first questions which arises when considering the 
problem of imitation learning is, quite simply, “what 
behaviours does the demonstration encode?” A well-
structured model of the human player’s actions would 
facilitate an organised analysis of the observation data, 
greatly aiding the imitation process. To this end, (Thurau et 
al 2004a) propose a model of in-game behaviour based 
closely on Hollnagel’s COCOM (Hollnagel 1993), as shown 
in Figure 7. 
 
Strategic behaviours refer to actions the player takes with 
long-term goals in mind, such as adjusting his traversal of 
the map to maximise the number of items in his possession. 
Tactical behaviours are mostly concerned with localised 
tasks such as evading or engaging opponents. Reactive 
behaviours involve little or no planning; the player simply 
reacts to stimuli in his immediate surroundings. Motion 
modelling refers to the imitation of the player’s movement; 
in theory, this should produce humanlike motion along the 
bot’s path, and should also prevent the agent from 
performing actions which are impossible for the human 
player’s mouse-and-keyboard interface (instantaneous 180˚ 
turning, perfect aim, etc). 
 
Goal-Oriented Strategic Behaviour 
 
In order to learn long-term strategic behaviours from human 
demonstration, we developed a model designed to emulate 
the notion of program level imitation discussed in (Byrne 
and Russon 1998); in other words, to identify the 
demonstrator’s intent, rather than simply reproducing his 
precise actions. In Quake 2, experienced players traverse the 
environment methodically, controlling important areas of the 
map and collecting items to strengthen their character. Thus, 
we define the player’s long-term goals to be the items 
scattered at fixed points around each level. By learning the 
mappings between the player’s status and his subsequent 
item pickups, the agent can adopt observed strategies when 
appropriate, and adapt to situations which the player did not 
face. 
 
Topology Learning 
 

As mentioned earlier, in the context of Quake, strategic 
planning is mostly concerned with the efficient collection 

and monopolisation of items and the control of certain 
important areas of the map. With this in mind, we first read 
the set of all player locations },,{ zyxl =

r
 from the DM2 

recording into MatLab via QASE’s DM2Parser, and the 
points are clustered to produce a reduced set of positions, 
called nodes. We initially employed the Neural Gas 
algorithm in this step, since it has been demonstrated to 
perform well in topology-learning tasks (Martinez et al 
1993); however, we later developed a custom modification 
of Elkan’s fast k-means (Elkan 2003) designed to treat the 
positions at which items were collected as immovable 
“anchor” centroids, thereby deriving a goal-oriented 
clustering of the dataset. By examining the sequence of 
player positions, we also construct an n x n matrix of edges 
E, where n is the number of clusters, and Eij = 1 if the player 
was observed to move from node i to node j and 0 otherwise. 
 
Deriving Movement Paths 
 
Because the environment described above may be seen as a 
Markov Decision Process, with the nodes corresponding to 
states and the edges to transitions, we chose to investigate 
approaches to goal-oriented movement based on concepts 
from reinforcement learning, in particular the value iteration 
algorithm. 
To do so, we first read the player’s inventory - the list of 
what quantities of which items he currently possesses - using 
the inventory-tracking facilities of DM2Parser described 
earlier, and we then obtain the set of unique inventory states; 
these inventory prototypes represent the varying situations 

 

 
Figure 7 - Thurau’s adaptation of Hollnagel's COCOM 

Figure 8 - An example of a path followed by the player while in a 
particular inventory state. The path originates in the lower part 
of the level, and ends at the point where the player picked up an 
item that caused his inventory to shift towards another 
prototype. 

 
Figure 9 - The ascending rewards assigned to one of the paths 
followed by the player (blue/red), and the results of the value 
iteration algorithm (green & magenta). The y-axis deontes the 
values associated with each waypoint in the topological map. 



 

faced by the player during the game session. We can now 
construct a set of paths which the player followed while in 
each inventory state. These paths consist of a series of 
transitions between clusters: 
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where ti is a transition sequence (path), and ci,j is a single 
node along that sequence. Each path begins at the point 
where the player enters a given state, and ends where he 
exits that state - in other words, when an item is collected 
that causes the player’s inventory to shift towards a different 
prototype. See Figure 8 for an illustration of this. 
 

Assigning Rewards 
 

Having obtained the different paths pursued by the player in 
each inventory state, we turn to reinforcement learning to 
reproduce his behaviour. In this scenario, the MDP’s actions 
are considered to be the choice to move to a given node from 
the current position. Thus, the transition probabilities are 
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To guide the agent along the same routes taken by the 
player, we assign an increasing reward to consecutive nodes 
in each path taken in each prototype, such that 
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where pi is a prototype, and ci,j is the jth cluster in the 
associated movement sequence. Each successive node along 
the path’s length receives a reward greater than the last, until 
the final cluster (at which an inventory state change 
occurred) is assigned the highest reward. If a path loops 
back or crosses over itself en route to the goal, then the 
higher values will overwrite the previous rewards, ensuring 
that the agent will be guided towards the terminal node while 
ignoring any non-goal-oriented diversions. Thus, as 
mentioned above, the agent will emulate the player’s 
program-level behaviour, instead of simply duplicating his 
exact actions. 
 
Learning Utility Values 
 
With the transition probabilities and rewards in place, we 
can now run the value iteration algorithm in order to 
compute the utility values for each node in the topological 
map under each inventory state prototype. The value 
iteration algorithm iteratively propagates rewards outwards 
from terminal nodes to all others, discounting them by 
distance from the reward signal; once complete, these utility 
values will represent the “usefulness” of being at that node 
while moving to the goal.  
 

In our case, it is important that every node in the map should 
possess a utility value under every state prototype by the end 
of the learning process, thereby ensuring that the agent will 
always receive strong guidance towards its goal. We adopt 
the game value iteration approach outlined in (Hartley et al 
2004) - the algorithm is applied until all nodes have been 
affected by a reward at least once. Figure 9 above shows the 
results of the value iteration algorithm on a typical path. 

Multiple Weighted Objectives 
 

Faced with a situation where several different items are of 
strategic benefit, a human player will intuitively weigh their 
respective importance before deciding on his next move. To 
model this, we adopt a fuzzy clustering approach. On each 
update, the agent’s current inventory is expressed as a 
membership distribution across all prototype inventory 
states. This is computed as: 
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where s is the current inventory state, p is a prototype 
inventory state, P is the number of prototypes, d -1 is an 
inverse-distance or proximity function, and mp(s) is the 
degree to which state vector s is a member of prototype p, 
relative to all other prototypes. The utility configurations 
associated with each prototype are then weighted according 
to the membership distribution, and the adjusted 
configurations superimposed; we also apply an online 
discount to prevent the possibility of backtracking. The 
formula used to compute the final utilities is thus: 
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where U(c) is the final utility of node c, γ is the online 
discount, e(c) is the number of times the player has entered 
cluster c since the last state transition, Vp(c) is the original 
value of node c in state prototype p, and E is the edge 
matrix. 
 

Object Transience 
 

Another important element of planning behaviour is the 
human’s understanding of object transience. A human 
player intuitively tracks which items he has collected from 
which areas of the map, can easily estimate when they are 
scheduled to reappear, and adjusts his strategy accordingly. 
In order to capture this, we introduce an activation variable 
in the computation of the membership values; inactive items 
are nullified, and the membership values are redistributed 
among those items which are still active. 
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where a, the activation of an item, is 1 if the object o at the 
terminal node of the path associated with prototype state p is 
present, and 0 otherwise. 
 
Bayesian Motion Modelling 
 
In the course of a game session, human players exhibit 
actions other than simply moving along the environment 
surface, including jumps, weapon changes and discharges, 
crouches, etc. In many cases, the player can only attain 
certain goals by performing one or more such actions at the 
appropriate time; they therefore have an important functional 
aspect. From the perspective of creating a believable agent, 



 

it is also vital to reproduce the human aesthetic qualities they 
encode - the agent should not, for instance, be capable of 
instantaneously turning 180°, since this would be impossible 
for the human’s mouse-and-keyboard interface. For the 
purposes of our agent, then, a means of imitating these 
actions is essential. 
 

In a previous contribution, Thurau et al describe an approach 
based on Rao, Shon & Meltzoff’s Bayesian inverse-model 
for action selection in infants and robots. The choice of 
action at each timestep is expressed as a probability function 
of the subject’s current position state ct, next position state 
ct+1 and goal state cg, as follows: 
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It is immediately clear that this model fits into the strategic 
navigation system almost perfectly; the clusters ct and ct+1 
are chosen by examining the utility values, while the current 
goal state is implicitly defined by the membership 
distribution. In order to derive the probabilities, we read the 
sequence of actions taken by the player as a set of vectors v 
such that 

 
v = [Δyaw, Δpitch, jump, weapon, firing] 

 
We then cluster these action vectors to obtain a set of  action 
primitives, each of which amalgamates a number of similar 
actions performed at different times into a single unit of 
behavior. 

Several important adaptations must be made in order to use 
this model in the game environment. Firstly, in practice we 
decouple the yaw and pitch elements of the action vector 
from the remainder, and sequence them separately - this 
produces a more fine-grained clustering of the primitives. 
Secondly, Rao’s model assumes that transitions between 
states are instantaneous, whereas multiple actions may be 
performed in Quake 2 while moving between successive 
clusters; we therefore express P(ct+1|ct,at) as a soft-
distribution of all observed actions on edge Ect,ct+1 in the 
topological map. Third, Rao assumes a single unambiguous 
goal, whereas we deal with multiple weighted goals in 
parallel. We thus perform a similar weighting of the 
probabilities across all active goal clusters. Finally, Rao’s 
model assumes that each action is independent of the 
previous action. In Quake 2, however, each action is 
constrained by that performed on the preceding timestep; we 
therefore introduce an additional dependency in our 
calculations. The final probabilities are computed as follows: 
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The priors can now be derived by direct examination of the 
observation data. 
 
Deploying the Agent 
With the DM2 data extracted and the required values 
computed, we can now deploy the agent. We extend any of 
the MatLabBots, implementing preMatLab such that it 

 

 

 

 

Figure 10 - Examples of a QASE agent in action, drawn from our experiments in imitation learning. The top sequence shows the agent 
leaning into and strafing around a corner, as a human player does. In the middle, the agent’s next goal is an item on top of the box. As it 
approaches, it looks downwards, jumps, and fires a rocket to propel itself upwards. This so-called rocket jump is considered an 
advanced move and is commonly employed by players to reach otherwise inaccessible areas. Bottom, the agent interacts with a lift by 
standing still as it ascends, then jumps off at the top, an unnecessary action which is nonetheless common among human players. 



 

extracts the player’s current position and inventory from the 
gamestate; these are then passed to MatLab. We also rewrite 
the MatLab template script to instantiate the agent and 
connect it to the server. On each update, MatLab determines 
the closest matching state prototype and node, extracts and 
weights  the relevant utility configurations,  finds  the  set  of  
 nodes connected to the current node by examining the edge 
matrix, and selects the successor with the highest utility 
value; it then examines the current position cluster, the 
cluster to which the agent is moving, the current goal 
distribution, and the last executed action primitive, 
computing from this the appropriate subsequent pitch, yaw, 
weapon, jump and firing state. All this data is then passed 
back to QASE and is received by the agent’s postMatLab 
method, which we have implemented such that it computes 
the direction between its current position and the next node 
and sets the agent’s movement accordingly; the bot’s 
orientation is simultaneously altered to reflect the specified 
action primitive. As the agent traverses its environment, item 
pickups and in-game events will cause its inventory to 
change, resulting in a corresponding change in the utility 
values and attracting the agent towards its next objective. 
Figure 10 shows the QASE agent in action. 
 
CONCLUSION 
 

In this paper, we identified the lack of a fully-featured, 
consolidated yet intuitive API as a major impediment to the 
adoption of commercial games in AI education and research. 
We then presented our QASE API, which  was  developed  
to meet these requirements. Several of its more important 
features were described, and their usefulness highlighted; 
these features were then compared against existing game-
based artificial intelligence APIs. A practical demonstration 
of QASE as it has been used in our own research closed this 
contribution. 
 

Since its release, QASE has already attracted attention from 
several quarters. From our correspondence, we know that it 
is currently used at Bielefeld University, Germany; it has 
been adopted by researchers at China’s Huazhong University 
and at Deustche Telekom; and it is used as both a research 
tool and undergraduate teaching aid at the University of Las 
Palmas de Gran Canaria. The number of downloads recorded 
thus far, along with some casual Google searches, suggest 
that several other groups are also utilising it in their work. 
As more such individuals discover QASE, the resulting 
feedback will aid us in continually improving the API; as 
part of that continuing effort, we hope that this paper will 
help to stimulate further interest in QASE, in imitation 
learning, and in the potential of games in AI research and 
education in general. 
 
FUTURE WORK 
 

Although we regard it as being very feature-rich at this 
point, QASE will continue to develop as we progress in our 
research. The two tracks of our work - that of investigating 
approaches to imitation learning and of building an 
accompanying API - have thus far informed each other; as 
mentioned earlier, QASE’s waypoint generator is derived 
from the approach outlined in the section QASE and 
Imitation Learning. In this way, further developments in our 
research will guide future development of the API. 

To download the API and accompanying documentation, 
please visit the QASE homepage: http://qase.vze.com 
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APPENDIX A: 
QASE PACKAGE STRUCTURE 
 

Having detailed the intent, design and implementation of the API, 
we here provide QASE’s full package structure. This will help to 
situate the concepts discussed above, and is intended as a 
practical aid for programmers wishing to avail of the 
features offered by QASE. For further details, please consult 
the QASE Specification and the Javadoc accompanying the 
API. 

QASE (soc.qase) consists of several packages. While 
perhaps somewhat daunting at first glance, the overall 
structure of the API is designed to be as intuitive and 
modular as possible. The following section describes the 
function of each package in greater depth. 
 
soc.qase.ai 
This package contains a number of subpackages and classes 
designed to provide some in-built AI functionality. Intended 
primarily for education purposes, since more heavy-duty 
research work can make use of the MatLab integration 
discussed earlier. 

soc.qase.ai.gann 

Consists of classes which implement a GANN architecture - 
that is, neural networks which learn through the application of 
evolutionary algorithms. Designed to allow students to examine 
and experiment with ready-made implementations of these 
common undergraduate constructs. 

soc.qase.ai.kmeans 

The kmeans package is designed to give students an insight 
into some basic principles of clustering techniques, and how 
they can be used. It is also heavily employed by various classes 
in the waypoint package (see below). 

soc.qase.ai.waypoint 

 Facilitates the creation of navigation systems for the agent. Of 
particular note is the WaypointMapGenerator class, 

which takes a recording of a human player traversing a level 
and automatically builds a full navigation system using the 
kmeans and dm2 packages, according to concepts outlined in 
(Gorman & Humphrys 2005). Waypoint maps can also be built 
manually. See the relevant section in the main paper. 
 
soc.qase.bot 
Contains classes facilitating the creation and control of Quake 2 
agents from differing levels of abstraction. See Appendix B for 
more details. 

soc.qase.bot.matlab, soc.qase.bot.matlab.general 

soc.qase.bot.matlab.sample 

Contain classes which enable the integration of QASE with the 
MatLab programming environment. See the relevant section of 
the main text for more. 

soc.qase.bot.sample 

 Contains a number of sample agents designed to demonstrate 
the procedure involved in writing an autonomous bot. 
 
soc.qase.com 
 The classes contained in the com package are used to 
implement low-level communication between a proxy 
component and the Quake 2 server. Mostly, therefore, these 
objects are for internal use, and can be ignored by a casual 
user of the API. However, the com package also includes the 
physical implementation of the QASE agent interface, in the 
form of the Proxy class. 

soc.qase.com.packet 

Consists of classes representing each packet type used in the 
course of a game session (client-to-server, server-to-client, 

 

 
Figure 11 - Package outline of the QASE API 



 

connectionless). Used as wrappers for the various Message 
classes, whose type and content are derived from the packet 
payloads. 

soc.qase.com.message 

Contains classes which encapsulate the data conveyed by each 
type of message used in a game session, including both client-
to-server messages (move agent, etc) and server-to-client 
messages (gamestate info, configuration, etc) 
 
soc.qase.file 
Consists of a set of subpackages designed to allow QASE to 
parse different file formats used by Quake 2, to store resource 
archives, recorded game sessions, or world geometry. 

soc.qase.file.bsp 

Contains the BSPParser and related classes. This allows 
QASE to read, parse and query the geometry of a game level, 
which Quake 2 stores in local BSP (Binary Space Partition) 
files. The BasicBot class contains a number of environment-
sensing methods which automatically find, load and query the 
current in-game map, using BSPParser in conjunction with 
PAKParser. 

soc.qase.file.dm2 

Contains the DM2Parser and DM2Recorder classes. The 
former allows QASE to read the recorded demo of a match by 
treating the .dm2 file as a virtual server, ‘connecting’ to it and 
reading the gamestate at each frame as it would during an 
online session. The latter allows QASE agents to automatically 
record themselves to file during play; this actually improves 
upon the standard Quake 2 recording facilities, by allowing 
matches spanning more than a single map to be recorded in 
playable format. 

soc.qase.com.pak 

The PAKParser class allows QASE to read and extract the 
contents of a PAK, the format use by Quake 2 to store multiple 
resource files in a single consolidated archive. Used extensively 
by BasicBot to automatically find and load the current map. 
 
soc.qase.info 
There are a number of classes in the info package, mainly 
intended for internal use by the API itself; these relate to the 
transfer of configuration data between server and client. The 
only class that should actually be used directly by the 
programmer is the User class which specifies player options, 
and even this is automated by the existing Bot hierarchy. 
 
soc.qase.state 
Contains classes representing each of the elements defining the 
current state of the game world and the desired change-of-state 
effected by the agent. The former includes game entities, the 
agent’s movement, its status, inventory and gun, irregular 
events and sounds; the latter includes the agent’s velocity, 
orientation and actions. 

soc.qase.tools 
Contains miscellaneous tools used throughout the API. The 
core Utils class provides methods to generate random 
numbers, convert byte arrays to data types and vice-versa, 
convert angular measurements to 2D vectors, parser 
environment variables, and more. 

soc.qase.com.vecmath 

Contains Vector2f and Vector3f classes which facilitate 
2D and 3D vector manipulation. 
 

APPENDIX B: 
CREATION OF QASE AGENTS 
In this section, the procedures involved in creating different 
types of QASE agent are outlined by demonstration. QASE 
agents fall into one of two broad categories; standalone 
agents, in which the AI routine is completely atomic and 
internalised within the runAI method inherited from 
BasicBot, and MatLab agents, wherein QASE acts as a 
“gamestate filter” and the AI routines themselves are 
implemented in the MatLab environment. 
 
Standalone Agents 
Creating a standalone QASE agent is extremely 
straightforward, thanks to the degree of automation provided 
by the API. All the programmer needs to do is create a 
subclass of ObserverBot, PollingBot or NoClipBot 
as appropriate, and write the necessary AI routines by 
implementing the abstract runAI method. Examples of both 
Polling and Observer agents are included with QASE, in the 
soc.qase.bot.sample package; each of these bots, 
when connected, will simply run directly towards the closest 
item in the game environment, collect it, and move on. 
 
MatLab Agents 
QASE agents which use MatLab as a back-end engine fall 
into one of two subcategories - they can either be direct 
MatLab agents, or hybrid agents. The former involves using 
one of the MatLabGeneralBots and writing the entire 
AI routine, including all gamestate parsing operations, 
within a MatLab script; this is the most straightforward 
approach, but is also quite computationally costly. The latter 
involves creating a subclass of MatLabObserver / 
Polling / NoClipBot, filtering the gamestate on each 
update, and passing only the minimal necessary state 
information to a partner MatLab script; this has the dual 
advantage of being more efficient and of allowing both 
script and agent to be modular and reusable. Hybrid agents, 
due to their significantly better performance, are the 
preferred paradigm - all our own research is conducted using 
hybrids. For both agent categories, QASE automates all 
information-passing functions, requiring only that the 
programmer write the AI routines themselves. Template 
MatLab scripts are supplied. 
 
Before any agents can be created, however, it is necessary to 
import the API into the MatLab environment. The MatLab 
scripts supplied with the QASE API include prepQASE.m, 
which automates this process. All that is required is for the 



 

user to edit the script to reflect the location at which the 
library JAR file is stored on his/her machine. 
 

 
 

Direct MatLab Agents 
Creating a direct agent involves simply editing the supplied 
BotManagerGeneralTemplate.m script, to supply the 
gamestate-parsing and AI routines in the main loop. When 
creating direct agents, it is preferable to use 
MatLabGeneralPollingBot rather than 
MatLabGeneralObserverBot, as the former gives 
superior performance; no such performance discrepancy 
exists in the case of hybrid agents. An example of one such 
agent is provided with the API. As with the standalone 
agents, the SampleBotManagerGeneral.m script will 
connect a bot to a local server, and instruct it to continually 
pursue the nearest active item. 
 
Hybrid MatLab Agents 
The advantage of using direct agents is that the MatLab code 
is very simple, and closely resembles that of a standalone 
agent. However, because it requires MatLab to perform a 
significant amount of Java object manipulation, it becomes 
quite computationally inefficient if large quantities of data 
are needed from the gamestate. Additionally, it means that a 
new script must be written from scratch for each agent. With 
this in mind, we developed an alternative paradigm designed 
to fulfil two criteria: 

 
• maximise efficiency by minimising cross-platform 

communication between MatLab and the JVM 
 
• separate the body of the agent (QASE) from its brain 

(MatLab), allowing both to be modular and reusable 
 
As mentioned in the “MatLab Integration” section earlier, 
the standalone bots’ AI routines are internalised and atomic, 
contained entirely within the runAI method. In order to 
facilitate MatLab, a new branch of agents, the MatLabBots, 
was created. Each of these conceptually possesses a three-
step AI routine as follows: 
 
 

1. Pre-process the data required for the task in QASE 
 
2. Processes the input data natively in MatLab according 

to specified AI routines 
 
3. Post-process the output data in QASE, applying it to the 

agent as appropriate. 
 

The pre-processing step filters the gamestate, presenting 
only the minimal required information to MatLab and 
thereby enabling both MatLab and Java to process as much 
data as possible in their respective native environments. In 
practice, QASE automates all transfer of data between 
QASE and MatLab, requiring only that the programmer 
supply the actual AI routines themselves. The steps  
involved in creating a hybrid agent are as follows: 

 

1. Create a concrete subclass of MatLabObserver / Polling 
/ NoClipBot. In particular, implement the two abstract 
methods as follows: 

 

• preMatLab - extract the input required for the given 
task from the gamestate and format it according to how 
MatLab will subsequently use it, placing the data into 
the supplied Object[]. Typically, this array will be 
populated with a series of individual float[] arrays, 
each supplying a different element of the input. 

 
• postMatLab - apply the results obtained from 

MatLab’s AI routines as appropriate. Again, this output 
usually takes the form of an Object[] populated with 
individual float[] arrays. 

 

2. Edit the template MatLab script in 
BotManagerTemplate.m to supply the necessary 
AI routines, performing computations upon the input 
data and placing the results in the output cell array 
provided. No direct action need be taken to affect the 
agent’s state; this will be done passively when the 
output data is passed to QASE. 

 

The framework for passing data to and from MatLab is 
automated in QASE’s MatLabBots, and the abstract 
methods and scripts are designed in such a way as to 
minimise the amount of code the programmer must write. By 
separating the concerns of each platform in this manner, we 
furthermore facilitate the reuse of both scripts and derived 
agents across different experiments. 
 
APPENDIX C: 
QASE AGENTS - CODE SAMPLES 
 

Over the following pages, we present some code samples to 
better illustrate the creation of QASE agents. The examples 
below are drawn from the sample agents included in the API 
itself (for standalone QASE bots) and the MatLab template 
scripts which accompany it (for direct / hybrid MatLab bots).

 
% substitute path to QASE lib on current system 
javaaddpath('C:\path_to_QASE\qaselib.jar'); 
 
import soc.qase.com.*; 
import soc.qase.info.*; 
import soc.qase.state.*; 
import soc.qase.bot.matlab.sample.*; 
import soc.qase.bot.matlab.general.* 
import soc.qase.file.dm2.*; 
 
% add any further imports here 
 

Figure 12 - prepQASE.m imports common packages into 
the MatLab environment 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 - Extract from SampleObserverBot.java, an example of a standalone QASE agent (abridged) 
 

 

function [] = BotManagerGeneralTemplate(botTime, recordFile) 
 

    prepQASE;   % import the QASE library 
 

    try 
        % create and connect the bot 
        matLabBot = MatLabGeneralPollingBot('MatLabGeneralPolling','female/athena'); 
        matLabBot.connect('127.0.0.1',-1,recordFile); 
 

        tic; 
 

        % loop for the specified amount of time 
        while(toc < botTime) 
            if(matLabBot.waitingForMatLab == 1) 
                % World state read from agent % 
                % app-dependent computations here % 
                % fov, velocity, etc applied directly % 
                matLabBot.releaseFromMatLab; 
            end 
 

            pause(0.01); 
        end 
    catch 
        disp 'An error occurred. Disconnecting bots...'; 
    end 
 

    matLabBot.disconnect; 
end 
 

Figure 14 - The BotManagerGeneralTemplate.m script file. Direct MatLab agents are created by editing this 
template to add the required AI computations in the main loop, as indicated. 

 

 public void runAI(World w) 
 { 
  ... 
 
  world = w; 
  player = world.getPlayer(); 
  entities = world.getItems(); 
 
  ... 
 
  // find nearest item entity 
  for(int i = 0; i < entities.size(); i++) 
  { 
   tempEntity = (Entity)entities.elementAt(i); 
 
   tempOrigin = tempEntity.getOrigin(); 
   entPos.set(tempOrigin.getX(), tempOrigin.getY(), 0); 
    
   tempOrigin = player.getPlayerMove().getOrigin(); 
   pos.set(tempOrigin.getX(), tempOrigin.getY(), 0); 
 
   entDir.sub(entPos, pos); 
 
   if((nearestEntity == null || entDir.length() < entDist) 
   && entDir.length() > 0) 
   { 
    nearestEntity = tempEntity; 
    entDist = entDir.length(); 
   } 
  } 
 
  // set subsequent movement in direction of nearest item 
  if(nearestEntity != null) 
  { 
   tempOrigin = nearestEntity.getOrigin(); 
   entPos.set(tempOrigin.getX(), tempOrigin.getY(), 0); 
 
   tempOrigin = player.getPlayerMove().getOrigin(); 
   pos.set(tempOrigin.getX(), tempOrigin.getY(), 0); 
 
   entDir.sub(entPos, pos); 
   entDir.normalize(); 
 
   setBotMovement(entDir, null, 200, 0); // set movement dir 
  } 
 } 
 



 

 
function [] = SampleBotManagerGeneral(botTime, recordFile) 
 

    prepQASE;   % import the QASE library 
 
    try 
        matLabBot = MatLabGeneralPollingBot('MatLabGeneralPolling','female/athena'); 
        matLabBot.connect('127.0.0.1',-1,recordFile); 
 
        pos = []; 
        entPos = []; 
        entDir = []; 
        entDirVect = soc.qase.tools.vecmath.Vector3f(0,0,0); 
 
        tic; 
 
        while(toc < botTime) 
            if(matLabBot.waitingForMatLab == 1) 
                world = matLabBot.getWorld; 
 
                tempEntity = []; 
                nearestEntity = []; 
                nearestEntityIndex = -1; 
                entDist = 1e10; 
 
                tempOrigin = []; 
 
                player = world.getPlayer; 
                entities = world.getItems; 
                messages = world.getMessages; 
 
                matLabBot.setAction(0, 0, 0); 
 
                for j = 0 : entities.size - 1 
                    tempEntity = entities.elementAt(j); 
 
                    tempOrigin = tempEntity.getOrigin; 
                    entPos = [tempOrigin.getX ; tempOrigin.getY]; 
 
                    tempOrigin = player.getPlayerMove.getOrigin; 
                    pos = [tempOrigin.getX ; tempOrigin.getY]; 
 
                    entDir = entPos - pos; 
 
                    if((j == 0 | norm(entDir) < entDist) & norm(entDir) > 0) 
                        nearestEntityIndex = j; 
                        entDist = norm(entDir); 
                    end 
                end 
 
                if(nearestEntityIndex ~= -1) 
                    nearestEntity = entities.elementAt(nearestEntityIndex); 
 
                    tempOrigin = nearestEntity.getOrigin; 
                    entPos = [tempOrigin.getX ; tempOrigin.getY]; 
 
                    tempOrigin = player.getPlayerMove.getOrigin; 
                    pos = [tempOrigin.getX ; tempOrigin.getY]; 
 
                    entDir = entPos - pos; 
                    entDir = normc(entDir); 
 
                    entDirVect.set(entDir(1, 1), entDir(2,1), 0); 
 
                    matLabBot.setBotMovement(entDirVect, entDirVect, 200, 0); 
                end 
 
                matLabBot.releaseFromMatLab; 
            end 
 
            pause(0.01); 
        end 
    catch 
        disp 'An error occurred. Disconnecting bots...'; 
    end 
 
    matLabBot.disconnect; 
end 

 
Figure 15 - SampleBotManagerGeneral.m. This direct MatLab agent closely parallels the 
SampleObserverBot.java source shown above. MatLab is responsible for obtaining the gamestate 
(matLabBot.getWorld), querying it to extract the required information, performing the necessary 
computations, and manually setting the agent’s subsequent actions (setBotMovement). 



 

 
% botTime specifies the bot's lifetime in seconds 
function [] = BotManagerTemplate(botTime, recordFile)  
    prepQASE;   % import the QASE library 
 
    mlResults = cell(1, 1); % allocate a cell array to contain MatLab's results 
 
    try 
        % create and connect the bot - can be either built-in or custom 
        matLabBot = SampleMatLabObserverBot('MatLabObserver','female/athena'); 
        matLabBot.connect('127.0.0.1',-1,recordFile); 
 
        tic; 
 
        % loop for the specified amount of time 
        while(toc < botTime) 
            if(matLabBot.waitingForMatLab == 1) 
                mlParams = matLabBot.getMatLabParams; 
 
                % app-dependent computations here % 
                % place results in mlResults cell array % 
 
                matLabBot.setMatLabResults(mlResults); 
 
                matLabBot.releaseFromMatLab; 
            end 
 
            pause(0.01); 
        end 
    catch 
        disp 'An error occurred. Disconnecting bots...'; 
    end 
 

Figure 16 - The BotManagerTemplate.m hybrid agent script. Users need only specify the size of the 
mlResults cell array (ie number of outputs) and the app-dependent computations as indicated. 

 
 

function [] = SampleBotManager(botTime, recordFile) 
 
    prepQASE;   % import the QASE library 
 
    mlResults = cell(1, 1); 
 
    try 
        matLabBot = SampleMatLabObserverBot('MatLabObserver','female/athena'); 
        matLabBot.connect('127.0.0.1',-1,recordFile); 
 
        tic; 
 
        while(toc < botTime) 
            if(matLabBot.waitingForMatLab == 1) 
                mlParams = matLabBot.getMatLabParams; 
 
                pos = mlParams(1); 
                entPos = mlParams(2); 
                dir = normc(entPos - pos); 
 
                mlResults{1} = dir; 
 
                matLabBot.setMatLabResults(mlResults); 
 
                matLabBot.releaseFromMatLab; 
            end 
 
            pause(0.01); 
        end 
    catch 
        disp 'An error occurred. Disconnecting bots...'; 
    end 
     
    matLabBot.disconnect; 
end 
 

Figure 17 - The SampleBotManager.m script, an example of a hybrid agent script. Input consists of the 
position of the agent and that of the nearest item, each in the form of a float array. Output is the direction the 
agent needs to move, in the form of a MatLab cell array  (which is auto-converted into an array of Java 
objects). As can be seen, separating Java and MatLab processing using hybrid agents results in clear, 
efficient and highly intelligible code. 
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