
W-learning:

Competition among sel�sh Q-learners

�

Mark Humphrys

University of Cambridge, Computer Laboratory

http://www.cl.cam.ac.uk/users/mh10006

y

April 1995

Abstract

W-learning is a self-organising action-selection scheme for systems with

multiple parallel goals, such as autonomous mobile robots. It uses ideas

drawn from the subsumption architecture for mobile robots (Brooks), im-

plementing them with the Q-learning algorithm from reinforcement learn-

ing (Watkins). Brooks explores the idea of multiple sensing-and-acting

agents within a single robot, more than one of which is capable of control-

ling the robot on its own if allowed. I introduce a model where the agents

are not only autonomous, but are in fact engaged in direct competition

with each other for control of the robot. Interesting robots are ones where

no agent achieves total victory, but rather the state-space is fragmented

among di�erent agents. Having the agents operate by Q-learning proves

to be a way to implement this, leading to a local, incremental algorithm

(W-learning) to resolve competition. I present a sketch proof that this

algorithm converges when the world is a discrete, �nite Markov decision

process. For each state, competition is resolved with the most likely win-

ner of the state being the agent that is most likely to su�er the most if it

does not win. In this way, W-learning can be viewed as `fair' resolution

of competition. In the empirical section, I show how W-learning may be

used to de�ne spaces of agent-collections whose action selection is learnt

rather than hand-designed. This is the kind of solution-space that may

be searched with a genetic algorithm.

Keywords: mobile robots, subsumption architecture, action selection, reinforce-

ment learning, Q-learning, multi-module learning, genetic algorithms

1 Autonomous mobile robots

Recent years have seen a new approach to the attempt to build autonomous mo-

bile robots. The new approach has been called behavior-based AI, emphasizing

intelligence as emerging from ongoing interaction with the world.

�

This is University of Cambridge Computer Laboratory technical report no.362, avail-

able from http://www.cl.cam.ac.uk/users/mh10006/publications.html (or direct from

ftp://ftp.cl.cam.ac.uk/papers/reports/TR362-mh10006-w-learning.ps.gz)

y

postal address: University of Cambridge, Computer Laboratory, New Museums Site, Pem-

broke St., Cambridge CB2 3QG, England. tel: +44 1223 335443. fax: +44 1223 334678 or

334679. email: Mark.Humphrys@cl.cam.ac.uk

1



I O

. . . . .

layer 1

layer 2

layer 3

Figure 1: Brooks' horizontal subsumption architecture.

1.1 The subsumption architecture

Brooks [Brooks, 1986, Brooks, 1991] introduces an architecture for building au-

tonomous mobile robots which he calls the subsumption architecture (Figure 1).

He builds in layers: layer 1 is a simple complete working system, layers

1-2 together form a complete, more sophisticated system, layers 1-3 together

form a complete, even more sophisticated system, and so on. Lower layers do

not depend on the existence of higher layers, which may be removed without

problem. Higher layers may interfere with the data 
ow in layers below them

- they may `use' the layers below them for their own purposes. If a higher layer

doesn't interfere, lower layers just run as if it wasn't there. The subsumption

architecture develops some interesting ideas:

� The concept of default behavior. e.g.the `Avoid All Things' layer 1 takes

control of the robot by default whenever the `Look For Food' layer 2 is

idle.

� Multiple parallel goals. There are multiple candidates competing to be

given control of the robot, e.g. control could be given to layer 1, which

has its own purposes, or to layer 5, which has di�erent purposes (and may

use layers 1-4 to achieve them). Which to give control to may not be an

easy decision - one can imagine goals which are directly-competing peers.

Multiple parallel goals are seen everywhere in nature, e.g.the con
ict be-

tween feeding and vigilance in any animal with predators.

� The concept of multiple independent channels connecting sensing to ac-

tion. Brooks breaks with the traditional AI paradigm of having a `per-

ception' subsystem, whose job it is to deliver a representation of the world

to some central symbolic module where all the `real' intelligence resides.

Instead, he has multiple sensing-to-action channels, working in parallel,

each processing sensory information in di�erent ways for its own purposes,

some crude, some sophisticated.

2



I

O

agent

agent

agent

agent

. . .

Figure 2: Competition among sel�sh peer agents in a horizontal architecture.

Each agent suggests an action, but only one action is executed. Which agent is

obeyed changes dynamically.

1.1.1 The action selection problem

With multiple adaptive sensing-and-acting modules, we have the problem of

action selection. Modules will suggest actions for the robot, in line with their

own perhaps con
icting goals. The robot must decide which action to select

for actual execution. Brooks liberates his modules by giving them full sensing-

and-acting powers, but does not go as far as letting them compete for control.

Instead, action-selection is a job for the programmer.

Brooks' original scheme has been extended (see survey in [Brooks, 1994]),

and other schemes have been proposed [Maes, 1989, Blumberg, 1994, Sahota, 1994],

but action-selection remains something basically designed rather than self-organised.

In an attempt to avoid this problem of design, I introduce a model in which yet

further liberation of modules is attempted.

1.2 Competition among sel�sh agents

I introduce a model (Figure 2) with the following features:

� Make the layers peers, so that each can function in the absence of all

the others. Now they are fully autonomous sensing-and-acting agents

[Minsky, 1986],

1

not ordered in any hierarchy, but rather in a loose

collection.

� Have them compete for control, having to make a case that they should be

given it. One will win, having its action executed, then they will compete

again for the next action to be executed, and so on inde�nitely.

1

I use the word agent to emphasise that each is a full autonomous actor in the world - if

left alone with a robot body to implement its actions. Under a stricter de�nition one might

claim that the robot is the only agent here, with varying software inside it. For somewhat-

autonomous, somewhat-competing modules within a single physical robot, [Brooks, 1986] uses

layer (though [Brooks, 1994] also uses process), [Minsky, 1986] uses agent (even though most

of his agents do not interact directly with the world), [Blumberg, 1994] uses activity and

[Sahota, 1994] uses behavior.

3



To be more precise, let the collection consist of agents A

1

; : : : ; A

n

. Time

steps are discrete. Each time step, the robot observes the world to be in some

state x. Each agent A

i

suggests an action a

i

(x) that it wants to see executed in

this state. The robot chooses precisely one of these actions a

k

(x) and executes

it. From an agent's point of view, it tells the robot what to do and the robot

chooses either to obey it or not.

At all times agents are engaged in pursuing their own separate goals. There

is no co-operation at all - these are sel�sh agents. Agents have no explicit

knowledge of the existence of any other agents. Each, if you like, believes itself

to be the entire nervous system.

2

This model will work if we can �nd some natural way of resolving competition

so that the `right' agent wins. The basic idea is that an agent will always have

an action to suggest (being a complete sensing-and-acting machine), but it will

`care' some times more than others. When no predators are in sight, the `Avoid

Predator' agent will continue to generate perhaps random actions, but it will

make no di�erence to its purposes whether these actions are actually executed

or not. When a predator does come into sight however, the `Avoid Predator'

agent must be listened to, and given priority over the default, background agent,

`Wander Around Eating Food'.

A simple scheme would be one where each agent suggests its action with a

strength (or Weight) W , expressing how important it is to their purposes that

they be obeyed at this moment, and the robot executes the action that comes

with the largest W (Figure 3).

To be precise, each agent A

i

maintains a table of W-values W

i

(x). Given a

state x, each agent A

i

suggests some action a

i

(x) with weightW

i

(x), The robot

executes action a

k

(x) where:

W

k

(x) = max

i21;:::;n

W

i

(x)

We call A

k

the leader in the competition for state x at the moment, or the

owner of x at the moment.

For example, in Figure 3, when the robot is not carrying food, the `Food'

agent tends to be obeyed. When the robot is carrying food, the `Hide' agent

tends to be obeyed. The two agents combine to produce a food-foraging robot.

Note that the `Hide' agent goes on suggesting the same action with the

same W in all situations. It just wants to hide all the time - it has no idea why

sometimes it is obeyed, and other times it isn't.

We can draw a map of the state-space, showing for each state x, which

agent succeeds in getting its action executed. Clearly, a robot in which one

agent achieves total victory (wins the whole state-space) is not very interesting.

It will be no surprise what the robot's behavior will be then - it will be the

behavior of the agent alone. Rather, interesting robots are ones where the

state-space is fragmented among di�erent agents (Figure 4).

As in Brooks' model, interesting robots are ones where control passes to

di�erent agents at di�erent times. But unlike Brooks, no agent is explicitly

aware of the existence of any other. An agent can still `use' another agent, but

2

Perhaps there is some evolutionary plausibility in this. Consider that the next step after

getting a simple sensor-to-e�ector link working is not a hierarchy or a co-operative architecture

but rather a mutation where, by accident, two links are built, and each of course tries to work

the body as if it were alone.

4



carrying
food

Hide

Food
go to food,
W=5

go to nest,
W=9

go to nest

not carrying
food

Hide

Food
go to food,
W=10

go to nest,
W=9

go to food

Figure 3: Competition is decided on the basis of W-values. The action with the

highest W-value is executed by the robot.

states x in which
the robot is
carrying food

states x in which
the robot is not
carrying food

state-space

Wf(x)Wh(x)

Wf(x) Wh(x)

Figure 4: We expect competition to result in fragmentation of the state-space

among the di�erent agents. In each state x, the `Hide' agent suggests some

action with weight W

h

(x), and the `Food' agent suggests an action with weight

W

f

(x). The grey area is the area where W

h

(x) > W

f

(x), that is, the `Hide'

agent wins all these states. The black area shows the states that the `Food'

agent wins.

5



not by being explicitly aware of its existence - rather by learning to cede control

of appropriate areas of state-space (which the other agent will take over).

1.2.1 W-values as action selection

This is a winner-take-all action selection scheme - that is, the winner gets

its exact action executed (as opposed to a scheme where the actions of agents

are merged).

Blumberg [Blumberg, 1994] uses information sharing between agents, which

may lead to a compromise action. Here there is no explicit information shar-

ing.

Also, the division of control is state-based rather than time-based. Blumberg

argues the need for a model of fatigue, where a switch of activity becomes more

likely the longer an activity goes on. He points out that animals sometimes

appear to engage in a form of time-sharing. It is not clear however, that these

e�ects cannot be achieved by a suitable state representation x. If an activity

goes on for long enough, some internal component of x (that is, some internal

sense, e.g.`hunger') may change, leading to a new x and a potential switch in

activity.

For example, consider the con
ict between feeding and body maintenance

(discussed by Blumberg). Some action selection schemes assign priorities to

entire activities, and then worry about how low-priority cleaning is ever going

to be able to interrupt feeding. In our scheme, let x = (e; i) be the state, where

e is information from external sensors and i = (f; c) is information from internal

sensors, where f takes values 2 (very hungry), 1 (hungry) and 0 (not hungry)

and c takes values 2 (very dirty), 1 (dirty) and 0 (clean). The `Food' agent

suggests actions with weight W

f

(x). The `Clean' agent suggests actions with

weight W

c

(x). We should �nd that for a given e; c:

W

f

((e; (2; c))) > W

f

((e; (1; c))) > W

f

((e; (0; c)))

and for a given e; f :

W

c

((e; (f; 2))) > W

c

((e; (f; 1))) > W

c

((e; (f; 0)))

A very strong `Food', only rarely interrupted by `Clean', would be repre-

sented by, for a given e:

W

f

((e; (2; c))) > W

f

((e; (1; c))) > W

c

((e; (f; 2)))

> W

f

((e; (0; c))) > W

c

((e; (f; 1))) > W

c

((e; (f; 0)))

Minsky [Minsky, 1986] warns that too simple forms of state-based switching

will be unable to engage in opportunistic behavior. His example is of a hungry

and thirsty animal. Food is only found in the North, water in the South. The

animal treks north, eats, and as soon as its hunger is only partially satis�ed,

thirst is now at a higher priority, so it starts the long trek south before it has

satis�ed its hunger. Even before it has got south, it will be starving again.

One solution to this would be time-based, where agents get control for some

minimum amount of time.

Again, however, time-based switching is not the only answer. Opportunistic

behavior is possible with a more sophisticated form of state-based switching,

6



where agents can tell the di�erence between situations when they are likely

to get an immediate payo� and situations when they could only begin some

sequence of actions which will lead to a payo� later. In Minsky's example,

where the thirst agent presents W-values W

t

(x), e

0

means no water visible, e

1

means water visible, and i

2

means very thirsty, we would like to see:

W

t

((e

0

; i

2

)) < W

t

((e

1

; i

2

))

It is not just a vain hope that W-values will be organised like this. As we

will see, the agents we are going to use can tell the di�erence between immediate

and distant likely payo�, and will present di�erent W-values accordingly.

For agents to be able to generate their own W-values, we need a scheme

whereby they attach some kind of numerical `�tness' value to the actions they

wish to take. Previous work in action selection has regarded assigning such val-

ues as a problem of design. In the literature, one sees formulas taking weighted

sums of various quantities in an attempt to estimate the utility of actions.

In fact, there is a way that these utility values can come for free. Learning

methods that automatically assign values to actions are common in the �eld of

reinforcement learning.

2 Reinforcement Learning

A reinforcement learning (RL) agent senses a world, takes actions in it, and

receives rewards and punishments from some reward function based on the con-

sequences of the actions it takes. By trial-and-error, the agent learns to take

the actions which maximise its rewards.

2.1 Q-learning

Watkins [Watkins, 1989] introduces a method of reinforcement learning which

he calls Q-learning.

The agent exists within a world that can be modelled as a Markov decision

process (MDP). It observes discrete states of the world x (2 X , a �nite set) and

can execute discrete actions a (2 A, a �nite set). Each discrete time step, it

observes state x, takes action a, observes new state y, and receives immediate

reward r. Transitions are probabilistic, that is, y and r are drawn from

stationary probability distributions P

xa

(y) and P

xa

(r), where P

xa

(y) is the

probability that doing a in x will lead to state y and P

xa

(r) is the probability

that doing a in x will generate reward r.

Here, rewards r are bounded by r

max

,r

min

, where r

min

< r

max

(r

min

= r

max

would be a system where the reward was the same no matter what action was

taken. The agent would always behave randomly and would be of no use or

interest).

2.1.1 The task

The agent acts according to a policy � which tells it what action to take in

each state x.

The agent is not interested just in immediate rewards, but in the total dis-

counted reward. In this measure, rewards received n steps into the future are

worth less than rewards received now, by a factor of 


n

where 0 � 
 < 1:

7



R = r

t

+ 
r

t+1

+ 


2

r

t+2

+ � � �

The discounting factor 
 de�nes how much expected future rewards a�ect

decisions now. The expected total discounted reward if we follow policy �

forever, starting from x

t

, is:

V

�

(x

t

) = E(R) = E(r

t

) + 
E(r

t+1

) + 


2

E(r

t+2

) + � � �

= E(r

t

) + 


�

E(r

t+1

) + 
E(r

t+2

) + 


2

E(r

t+3

) + � � �

�

= E(r

t

) + 
V

�

(x

t+1

)

=

P

r

rP

x

t

a

t

(r) + 


P

y

V

�

(y)P

x

t

a

t

(y)

V

�

(x) is called the value of state x under policy �. The problem for the

agent is to �nd an optimal policy - one that maximises the total discounted

expected reward (there may be more than one policy that does this).

2.1.2 The strategy

The strategy that the Q-learning agent adopts is to build up Quality-values

(Q-values) for each pair (x; a). In 1-step Q-learning, after each experience, we

update:

Q(x; a) := (1� �)Q(x; a) + �(r + 
max

b2A

Q(y; b)) (1)

where the learning rate �, 0 � � � 1, takes decreasing (with each update)

successive values �

1

; �

2

; �

3

: : :, such that

P

1

i=1

�

i

= 1 and

P

1

i=1

�

2

i

< 1.

Each pair (x; a) has its own learning rate � = �(x; a). See Lemma B.1.1 (in

appendix) for an illustration of how � works.

Note that if the conditions hold, then for any t,

P

1

i=t

�

i

=1 and

P

1

i=t

�

2

i

<

1, so � may start anywhere along the sequence. That is, � may take successive

values �

t

; �

t+1

; �

t+2

: : : (see Lemma B.1.2).

The scheme used in this work is, where n(x; a) = 1; 2; 3; : : : is the number of

times Q(x; a) has been visited:

�(x; a) =

1

n(x;a)

= 1;

1

2

;

1

3

; : : :

Since the rewards are bounded, it follows that the Q-values are bounded

(Lemma A.2.1).

2.1.3 Convergence of Q-learning

If each pair (x; a) is visited an in�nite number of times, then Q-learning

converges to a unique set of values Q(x; a) = Q

�

(x; a) which de�ne a stationary

deterministic optimal policy [Watkins and Dayan, 1992]. Q-learning is asyn-

chronous and sampled - each Q(x; a) is updated one at a time, and the control

policy may visit them in any order, so long as it visits them an in�nite number

of times.

The agent will maximise its total discounted expected reward if it always

takes the action with the highest Q

�

-value. That is, the optimal policy �

�

is

de�ned by �

�

(x) = a

�

(x) where:

V

�

(x) = Q

�

(x; a

�

(x))

= max

b2A

Q

�

(x; b)

8



2.1.4 The control policy for Q-learning

In real life, since we cannot visit each (x; a) an in�nite number of times, we

can only approximate Q-learning. We could do a large �nite amount of random

exploration, then exploit our knowledge. But a more practical control policy gets

the agent acting adaptively as soon as possible, by starting with high exploration

and decreasing it to nothing as time goes on, so that after a while we are only

exploring (x; a)'s that have worked out at least moderately well before.

The control policy used in these experiments is a fairly standard one in the

�eld, and was originally suggested by Sutton. The agent suggests actions prob-

abilistically based on their Q-values using a Boltzmann (soft max) distribution.

Given a state x, it suggests action a with probability:

P

x

(a) =

e

Q(x;a)

T

P

b2A

e

Q(x;b)

T

The temperature T controls the amount of exploration (the probability of

suggesting actions other than the one with the highest Q-value). T starts high

and declines to zero as time goes on.

2.1.5 The multi-module problem

Most work in RL has focused on single agents, for which a well-developed

theory is now in place. In theory, any problem can be seen as just another

I/O mapping to be learnt by a single agent. In practice though, the learning

methods do not scale up inde�nitely, and it is recognised that methods are

needed to combine simple agents to solve complex tasks.

A top-down approach to multi-module RL systems involves identifying the

task and decomposing it into subtasks, each of which can be solved by a single

RL agent. Moore [Moore, 1990] does this by hand, but it is clear that this is

only feasible with certain problems. Singh [Singh, 1992], and later Tham and

Prager [Tham and Prager, 1994], learn the decomposition, but only in a class

of problems where subtasks combine sequentially to solve the main task. In

autonomous mobile robots (and many other systems) we are also likely to be

interested in subtasks acting in parallel, and interrupting each other rather than

running to completion.

Lin [Lin, 1993] learns the decomposition for potentially parallel, non-terminating

subtasks. Each agent learns a di�erent Q

i

(x; a) to solve a subtask, and the robot

learns Q(x; i), where i is which agent to choose in state x. A problem here is

that we have to design a global reward function. While clearly a reward can be

given on completion of the global task, interim rewards may be hard to design

(similar to the problem of just getting a single monolithic agent to learn the

whole thing). To do the job with local reward functions only, we must adopt

a bottom-up approach.

A bottom-up approach studies the behavior that emerges when multiple RL

agents are combined in di�erent ways. Tan [Tan, 1993] studies the bene�ts of co-

operation among agents, where each agent has their own body to control in the

world. He focuses on communication of information among agents (analogous,

say, to the communication of information among ants). Co-operation is based

on explicit interactions with other agents. These interactions are designed in a

similar fashion to the design of the agent's sensors.

9



This type of co-operation is designed in. A more interesting type of co-

operation is the involuntary type, which emerges from competition among agents

that have a limited ability to get their own way, such as in the model introduced

in Section 1.2. This model is a community of agents, without global control,

where each makes their own adjustment to the presence of the others, based

only on their local needs. The aim is to study the behavior that emerges when

they compete - which may or may not involve studying how they solve some

(global) task perceived by an observer (and not perceived by the agents).

The existence of numerical Quality-values for actions suggests that using

Q-learning agents will be a way to implement the model. A Q-learning agent

may not be able to explain why it wants to do something, but it certainly knows

how much it wants to do it (which is something that does not come naturally

with a designed agent).

2.2 Competition among sel�sh Q-learners

I use Q-learning as the mode of operation of the competing sel�sh agents in my

model. Each agent is a Q-learning agent, with its own set of Q-values and more

importantly, with its own reward function.

To formalise, each agent A

i

receives rewards r

i

from a personal distribution

P

i

xa

(r). The distribution P

xa

(y) is a property of the world - it is common across

all agents. Each agent A

i

maintains personal Q-values Q

i

(x; a) and W-values

W

i

(x). Given a state x, it suggests an action a

i

according to a control policy

as in Section 2.1.4, operating on Q

i

(x; a). a

i

is most likely, as time goes on, to

be such that:

Q

i

(x; a

i

) = max

b2A

Q

i

(x; b)

The robot works as follows. Each time step:

observe x

for (all agents):

get suggested action a

i

with strength W

i

(x)

�nd W

k

(x) = max

i21;:::;n

W

i

(x)

execute a

k

observe y

for (all agents):

get reward r

i

update Q and/or W

Note that the transition will generate a di�erent reward r

i

for each agent.

For updating Q, we use normal Q-learning. For updating W , we want somehow

to make use of the numerical Q-values. There are a number of possibilities.

2.3 Static W-values

A static measure of W is one which depends only on the agent, not on the

collection in which it �nds itself. The agent will promote its action with the

same strength no matter what (if any) its competition. For example, where a

is the suggested action:

W (x) = Q(x; a)

10



State

Action
Q(x,a)= 2.50

2.49

2.52

2.49

4.10

4.00

0.10

y x

0.03

0.03

Figure 5: The concept of importance. State x is a relatively unimportant state

for the agent (no matter what action is taken, the discounted reward will be

much the same). State y is a relatively important state (the action taken matters

considerably to the discounted reward).

2.3.1 W = importance

A more sophisticated W would represent the di�erence between taking the ac-

tion and taking other actions, i.e. how important this state is for the agent.

The assumption here is that if the agent's W is low and it is not obeyed, some

other agent will be, and some other action will be executed. The concept of

importance is illustrated in Figure 5.

For example, W could be the di�erence between a and the worst possible

action:

W (x) = Q(x; a)�min

b2A

Q(x; b)

2.4 Dynamic (learnt) W-values

The problem with a static measure of W is that it fails to take into account

what the other agents are doing. If agent A

i

is not obeyed, the actions chosen

will not be random - they will be actions desirable to other agents. It will depend

on the particular collection what these actions are, but they may overlap in

places with its own suggested actions. If another agent happens to be promoting

the same action as it, then it does not need to be obeyed. Or more subtly, the

other agent might be suggesting an action which is almost-perfect for it, while

if its exact action succeeded, it would be disastrous for the other agent, which

would �ght it all the way.

We have two types of states that A

i

need not compete for:

Type 1 - A state which is relatively unimportant to it. It doesn't matter much

to A

i

's discounted reward what action is taken here. In particular, it

doesn't matter if some other agent A

k

takes an action instead of it.

Type 2 - A state in which it does matter to A

i

what action is taken, but where

11



some agent A

k

just happens to be suggesting an action which is good for

A

i

. This may or may not be the action A

i

would itself have suggested.

2.4.1 W = (P �A)

What we really need to express inW is not how important the action is but what

happens when we are not obeyed. Rather than importance, W should express

the di�erence between predicted reward P (what is predicted if we are listened

to) and actual reward A (what actually happened). What happens when we

are not listened to depends on what the other agents are doing.

Using such a measure of W , an agent will not need explicit knowledge about

who it is competing with. It need only have local knowledge - what state x we

were in, what action a it suggested, whether it was obeyed or not, what state y

we went to, and what reward r that gave it. It will be aware of its competition

only indirectly, by the interference they cause. It will be aware of them when

they stop its action being obeyed, and will be aware of the y and r caused as a

result. The agent will learn W by experience - by actually experiencing what

the other agents want to do.

We do not want any global controller analysing all agents and setting their

W-values. We want the agents setting their own W-values in an incremental

way, using only local information (just like Q-learning). The following algorithm

provides such a way.

3 W-learning

Consider Q-learning as the process:

P := (1� �

Q

)P + �

Q

(A)

Then W-learning is:

W := (1� �

W

)W + �

W

(P �A)

For updating the Q-values, only one agent (the leader A

k

) suggested the

executed action a

k

. However, all agents can learn from the transition (under

their own di�erent reward functions).

3

We update for all i:

Q

i

(x; a

k

) := (1� �

Q

)Q

i

(x; a

k

) + �

Q

(r

i

+ 
max

b2A

Q

i

(y; b)) (2)

where �

Q

= �

Q

(x; a

k

). We can do this because Q-learning is asynchronous

and sampled (we can learn from the single transition, no matter what came

before and no matter what will come after).

For the W-values, we only update the agents that were not obeyed. We

update for i 6= k:

W

i

(x) := (1� �

W

)W

i

(x) + �

W

(Q

i

(x; a

i

)� (r

i

+ 
max

b2A

Q

i

(y; b))) (3)

3

Although communicating a

k

to each agent does somewhat compromise the model of agents

having local knowledge only.

12



where �

W

= �

W

(x) takes successive values 1;

1

2

;

1

3

; : : :. The reason why

we do not update W

k

(x) is explained later (Section 4.4). In (object-oriented)

pseudo-code, the W-learning system is, every time step:

state x := observe();

for ( all i )

a[i] := A[i].suggestAction(x);

find k

execute ( a[k] );

state y := observe();

for ( all i )

{

r[i] := A[i].reward(x,y);

A[i].updateQ ( x, a[k], y, r[i] );

if (i != k)

A[i].updateW ( x, a[i], y, r[i] );

}

Alternatively [Sutton, 1988], consider Q-learning as the process:

P := P + �

Q

(A�P)

Then W-learning is:

W :=W + �

W

((P �A)�W )

Note how the agents learn their Q-values together, rather than alone. We

must ensure, when learning together, that all agents experience a large number

of visits to each of their (x; a).

Since the rewards and Q-values are bounded, it follows that the W-values

are bounded (Lemma A.3.1).

Note that this scheme reduces to normal Q-learning when the agent is alone

inside the robot. In this case, Q is updated every step with the action it sug-

gested, and W is never updated at all. It doesn't matter what W-values it has

- the agent is always obeyed.

3.1 Learning Q (somewhat) before learning W

Ideally we would like to say `learn Q �rst, thenW ', but of course it is impossible

to learn Q completely in �nite time. We could have a long period of learning

Q, followed by learning W . Alternatively, the scheme I use here starts learning

W while Q is still being learnt:

W

i

(x) := (1��

W

)W

i

(x) +�

W

(1��

Q

)

!

(Q

i

(x; a

i

)� (r

i

+ 
max

b2A

Q

i

(y; b))) (4)

where (1 � �

Q

) = (1 � �

Q

(x; a

i

)) increases with each update of Q

i

(x; a

i

),

and the delaying rate ! > 0.

Low ! means letting W converge quickly. High ! means delaying W 's con-

vergence until Q is well known. ! can be seen as a parameter to control how

`fair' or scrupulous the adjudication of competition is.

13



3.2 After Q has been (somewhat) learnt

As Q is learnt:

predicted P = Q! Q

�

(1� �

Q

)! 1

(1� �

Q

)

!

! 1

and, letting agent A

k

be the leader, the update for A

i

, i 6= k, is approximated

by:

W

i

(x) := (1� �

W

)W

i

(x) + �

W

(V

�

i

(x)� (r

i

+ 
V

�

i

(y)))

In general, Q will be already somewhat learnt while W is doing its learn-

ing. Either we delay the learning of W (see previous section) or, alternatively,

imagine a dynamically changing collection with agents being continually created

and destroyed over time, and the surviving agents adjusting their W-values as

the nature of their competition changes. Q is only learnt once, right from the

start of the life of the agent, whereas W is relearnt again and again.

4

The

skill that A

i

learns, expressed in its converged Q-values, remains intact through

subsequent competitions for x. Once it learns its action a

�

i

(x) it will promote

it in all competitions, only varying the strength with which it is promoted (in

the long term, we only need to keep W

i

(x) values, not W

i

(x; a) values). In the

long term, any W-competition will settle down into a competition between the

optimal actions a

�

i

(x). The update for A

i

is approximated by:

W

i

(x) := (1� �

W

)W

i

(x) + �

W

d

ki

(x)

where the random variable d

ki

(x) is the `deviation' (di�erence between pre-

dicted P and actual A) that A

k

causes for A

i

in state x if both are converged

to their respective Q

�

.

d

ki

(x) is a stationary probability distribution because P

i

xa

(r), P

xa

(y) are.

To be precise:

E(d

ki

(x)) = V

�

i

(x) � (E(r

i

) + 
E(V

�

i

(y)))

= V

�

i

(x) �

�

P

r

rP

i

xa

(r) + 


P

y

V

�

i

(y)P

xa

(y)

�

where a = a

�

k

(x). We expect:

E(d

kk

(x)) = 0

(though we do not actually update W

k

(x)), and we expect for i 6= k:

4

This can be compared to Edelman's biological theory of Neural Darwinism

[Edelman, 1989, Edelman, 1992], in which the mind is viewed as a dynamic, competing col-

lection of what he calls neuronal groups. The idea is appealing - it has been compared to a

\rainforest" or dynamic ecosystem inside the head. However, Edelman presents no algorithm

to show how it could be implemented. In fact, presenting arguments only about the limitations

of various traditional AI models, he draws the extreme conclusion that no computer algorithm

could implement his ideas. No mention is made of self-modifying, reinforcement-learning

agents embedded in a world (such as the agents described here, but see [Kaelbling, 1993]

for a broad survey), to which his criticisms do not apply. Indeed, RL seems to be exactly

what Edelman is looking for. A dynamically-changing W-collection would seem to be a rough

algorithmic implementation of some of Neural Darwinism's main ideas.

14



E(d

ki

(x)) � 0

That is, if obeyed, we expect A = P . If not obeyed, we expect A � P .

If A

k

leads from the start to in�nity, then by Lemma B.1.1:

W

i

(x) ! E(d

ki

(x))

� 0

Of course, it may be interrupted, as some new agent takes the lead. If A

i

itself takes the lead, then W-learning stops for it until (if ever) it loses it. If

another agent A

l

takes the lead, then A

i

will suddenly be taking samples from

the distribution d

li

(x). By Lemma B.1.2, if we update forever from this point,

then W

i

(x) eventually converges to the expected value of the new distribution:

W

i

(x)! E(d

li

(x))

and so on. The W-learning algorithm can handle any number of switches

of leader. Each time the leader changes, W

i

(x) starts converging toward the

expected value of the new distribution, until such time (if ever) as there is

another change of leader.

The history of W

i

(x) will be something like this:

leader is A

k

W

i

(x)! E(d

ki

(x))

leader changes to A

l

W

i

(x)! E(d

li

(x))

A

i

itself becomes the leader

W

i

(x) static

leader changes to A

m

W

i

(x)! E(d

mi

(x))

� � �

The question is - will competition for the state ever be resolved, or will the

leader keep changing forever?

4 Convergence

We have seen that W-learning is bounded, but does it converge? With Q-

learning, Watkins showed that there was a unique stable solution, and, more

importantly, that Q-learning will actually converge to it. With W-learning, I

show that there is at least one and possibly multiple stable solutions, and that

W-learning will converge to one of them.

It may seem obvious that W-learning converges, since the learning rate is

declining. But that only means W converges if it is sampling from a stationary

distribution. As long as the leader stays the same, W

i

(x) does sample from a

stationary distribution, and converges to its expected value. What we need to

show is that the leader will not keep changing forever.

4.1 A model for resolution of competition

First consider a matrix:

15



0

B

B

B

B

@

0 d

21

d

31

: : : d

n1

d

12

0 d

32

: : : d

n2

d

13

d

23

0 : : : d

n3

� � �

d

1n

d

2n

d

3n

: : : 0

1

C

C

C

C

A

where all d

ij

� 0.

Lemma 4.1.1 Given variables W

1

; : : : ;W

n

, the process:

start with any arbitrary values for W

1

; : : : ;W

n

i := any column

repeat forever

if W

i

� d

ij

8j then terminate

else choose any m such that d

im

> W

i

W

m

:= d

im

i := m and repeat

will terminate within n

2

steps, and we will have found i such that:

W

i

� d

ij

8j

Proof: The process goes:

If we don't have the termination condition W

i

� d

ip

8p then �nd j s.t:

d

ij

> W

i

W

j

:= d

ij

If we don't have the termination condition W

j

� d

jp

8p then �nd k s.t:

d

jk

> W

j

W

k

:= d

jk

d

jk

> d

ij

If we don't have the termination condition W

k

� d

kp

8p then �nd l s.t:

d

kl

> W

k

W

l

:= d

kl

d

kl

> d

jk

> d

ij

� � �

We have a strictly increasing sequence here, using up one matrix element at

a time, so this process must terminate within n

2

steps.

4.2 Convergence of W-learning

The world is an MDP. State and action spaces are discrete, �nite. Time steps are

discrete. We have agents A

1

; : : : ; A

n

, who experience probabilistic transitions

P

xa

(y), and receive rewards P

i

xa

(r). For each state x, there is a matrix:

0

B

B

B

B

@

0 E(d

21

(x)) E(d

31

(x)) : : : E(d

n1

(x))

E(d

12

(x)) 0 E(d

32

(x)) : : : E(d

n2

(x))

E(d

13

(x)) E(d

23

(x)) 0 : : : E(d

n3

(x))

: : :

E(d

1n

(x)) E(d

2n

(x)) E(d

3n

(x)) : : : 0

1

C

C

C

C

A

where all E(d

ij

(x)) � 0.

16



Theorem 4.2.1 (Convergence Theorem) If E(d

ij

(x)), i 6= j, are all dis-

tinct, then W-learning will resolve the competition for this state.

If this holds for all states x, then W-learning will resolve the competition

throughout the whole state-space.

Sketch Proof: Consider the process:

start with any arbitrary values for W

1

(x); : : : ;W

n

(x)

k := the agent such that W

k

(x) = max

i21;:::;n

W

i

(x)

repeat forever

if W

k

(x) � E(d

ki

(x))8i; i 6= k then terminate

else choose any l such that:

E(d

kl

(x)) > W

k

(x)

W

l

(x) := E(d

kl

(x))

k := l and repeat

By Lemma 4.1.1, this process will terminate within n

2

steps, resolving com-

petition with a winner:

W

k

(x) � E(d

ki

(x))8i; i 6= k

Since all E(d

ij

(x)) are distinct, the condition if W

k

(x) � E(d

ki

(x)) is equiv-

alent to the condition if W

k

(x) > E(d

ki

(x)), as in W-learning.

This is only a sketch proof because of the step W

l

(x) := E(d

kl

(x)). W-

learning is the same process as above except that W

l

(x) ! E(d

kl

(x)), so there

may be statistical variations in any �nite sample. As the number of experi-

ences ! 1 however, the expected values must emerge from the samples and

competition will be resolved.

In fact, because of unrepresentative samples,W

k

(x) may be overtaken by an

agent where actually E(d

kl

(x)) < W

k

(x), but it is expected that as the number

of experiences !1, this temporary phenomenon too will vanish.

4.2.1 W-learning in practice

In practice, the condition that E(d

ij

(x)) be all distinct is not really any restric-

tion at all. The E(d

ij

(x)) are real numbers, so the set of problems (two being

exactly the same) is in�nite but sparse, e.g. for two agents, it is the line x = y

in <

2

.

With real-valued rewards (see Section 5), probabilistic transitions, and agents

with widely di�erent logic in their reward functions, we expect the V

�

i

(x), and

hence the E(d

ij

(x)), to be di�erent real numbers, in which case competition

will be resolved (if we're really worried about draws, we can just arbitrarily halt

competition after some lengthy time).

So, just as we can take any reward function, and Q-learning will eventually

converge to the appropriate Q

�

, we can put together any collection of agents,

and eventually they will divide up state-space between them, based on the

deviations they cause each other.

4.3 Multiple possible winners from the E(d

ij

(x)) matrix

Note that for a given E(d

ij

(x)) matrix, there may be more than one possible

winner. For example:

17



0

@

0 3 0

0 0 9

0 0 0

1

A

Start with all W

i

(x) = 0. Choose agent A

2

's action for execution. Then:

W

1

(x) := 3

Now agent A

1

is in the lead, and:

3 > 0; 0; 0

Agent A

1

is the winner. However, if we had started by choosing agent A

3

's

action, then:

W

2

(x) := 9

Now agent A

2

is in the lead, and:

9 > 3; 0; 0

Agent A

2

is the winner. We have a winner when somebody �nds a deviation

they su�er somewhere that is worse than the deviation they cause everyone else.

W-learning does not exhaustively search all combinations i; j to �nd the

highest E(d

ij

(x)) in the matrix. It would be impractical to let every agent

experience what it is like with every other agent in the lead. W-learning gets

down to a winner a lot quicker than that.

Also, it is not simply a question of the highest E(d

ij

(x)) - we aren't interested

in the worst deviation an agent could possibly su�er, we are interested in what

it is likely to su�er if it does not win.

4.4 Scoring W

k

(x)

Should we score W if obeyed as well? If we do, then:

W

k

(x) ! E(d

kk

(x))

= 0

The leader's W is converging to zero, while the other agents' W 's are con-

verging to E(d

ki

(x)) � 0. They are guaranteed to catch up with it. So there

will be no resolution of the competition ever.

We might think it would be nice to try and reduce all weights to the minimum

possible; so as soon as you are obeyed, you start reducing your weight. But you

can only �nd the minimum by reducing so far that someone else takes over.

Hence we will have back and forth competition forever under any such system.

This is why the leader does nothing - it's up to the others to catch up with

it. If they can't, we have a resolved competition.

18



4.5 Scaling, peers and unequal agents

Note that the use of (P �A) means that the algorithm is not scaled. An agent

with rewards 1, -1, 0 will end up with higher W-values than an equivalent agent

with rewards 0.1, -0.1, 0 and the same logic, since its absolute (P�A) di�erences

will be greater. It will win a greater area of state-space in competitions.

This is in fact what we want. We call the agents peers because they compete

on the same basis, but we do not want them to be peers in the sense that all their

concerns are of equal importance, which is what scaling would make them. We

want to be able to express a strong version of the predator-avoider (if predator

visible r = �10, else r = 0) as distinct from a weak version of the same thing (if

predator visible r = �0:1, else r = 0). Adaptive collections are likely to involve

well-chosen combinations of weak and strong agents.

5 Empirical Work

We could take selected combinations of agents and see how they resolve their

competition. Alternatively, the approach I take is to use the fact that any com-

bination of agents will resolve their competition, and do an automated search

looking for interesting combinations.

Starting with any n agents with any reward functions (leading to any con-

verged Q-values), W-learning will eventually converge and the agents will have

permanently divided up state-space between them. So we can de�ne spaces of

possible robot architectures where every point in the space represents a robot

that can be built and tried out (for the best exposition of this concept see

[Dawkins, 1986, Ch.3]). Such a space can be searched in a manner similar to

evolution by natural selection [Langton, 1989].

I use a Genetic Algorithm (GA) (from [Holland, 1975], for an introduction

see [Goldberg, 1989]) to search such a space of agent-collections for collections

whose W-converged situation is adaptive (by some criterion).

5.1 The Genetic Algorithm

A genotype of the GA encodes a collection of real-valued reward functions,

each of which de�nes a Q-learning agent. An individual is assembled, being a

collection of Q-learning agents. At the `birth' of the individual, agents have

random Q-values and W-values. There follows a `childhood' of Q-learning and

W-learning. After a �nite time, the individual is tested for �tness according to

some criterion. The �tter individuals are chosen for reproduction, which involves

crossover and mutation of their genotypes, leading to genotypes encoding new

reward functions. A new population of genotypes is constructed - and so on, in

the normal GA manner.

Features of this GA:

� Provides one solution to the problem of `where do the rewards come from?'

in RL, by evolving them. It is productive to think of rewards not as some-

thing external and informative but as simply some arbitrary internal sig-

nals (a similar attitude is taken by Ackley and Littman [Ackley and Littman, 1991],

in their evolution-plus-learning experiment).

19



If an agent generates high rewards for itself when it sees predators, then

its converged Q

�

will cause it to seek out predators. This may not be a

good thing, but that is a separate issue. Adaptive agents are ones that

happen to generate suitable internal rewards.

� A concise genotype. Much current work on evolving control systems for

robots involves encoding the entire explicit control program in the geno-

type - see the Arti�cial Neural Networks (ANN's) of much current Ar-

ti�cial Life work [Collins, 1992, Harvey et al., 1993], or the Genetic Pro-

gramming (GP) of Koza [Koza, 1991].

Here, the genotype simply states what is good and what is bad about the

world (in each agent's perhaps unadaptive opinion) and nothing else. It

says nothing about how to make good things happen and how to avoid bad

things - agents have to learn this via their own individual, historical ex-

periences. Nor does the genotype state how control is to be shared among

the agents - the agents have to learn this by their history of competing

with each other.

� One of the major issues with sophisticated ALife encodings such as ANN's

is whether one can analyse the solution that evolves, or whether it is just

some impenetrable `spaghetti' that happens to work. Many researchers

[Collins, 1992, Sims, 1994, Harvey et al., 1994] have run into the problem

of evolving creatures that present a similar challenge of analysis as natural

creatures do.

Here, evolving the rewards rather than the explicit behavior will permit

at least some analysis of the solutions found. The classi�cation of the

world into good and bad in the genotype immediately tells us what the

evolved agent likes and dislikes and allows us classify evolved agents as

`food-seekers', `predator-avoiders' etc. (though we may �nd it di�cult to

see why a particular combination of agents is adaptive).

5.2 The Simulated World

The problem I set for my W-learning simulated robot is the con
ict between

seeking food and avoiding predators on a simple simulated landscape (Figure 6).

The world is a toroidal (SIZE x SIZE) gridworld containing a nest, a num-

ber (NOFOOD) of static, randomly-distributed pieces of food, and a number

(NOPREDATORS) of dynamic, randomly-moving dumb predators. World,

evolution and learning are all implemented in C++.

The simulated robot makes a number of runs, each of length STEPSPER-

RUN timesteps. At the start of each run, the robot, food and predators are

placed randomly. Each timestep, the robot can move one square or stay still.

When it �nds food, it picks it up. It can only carry one piece of food at a time,

and it can only drop it at the nest. The task for the robot is to forage food (i.e.

�nd it, and bring it back to the nest) while avoiding the predators.

The world is so simple that we can use discrete states and actions with no

generalization. No claims are made for this world - we are constructing here

examples of how W-learning can work rather than the evidence that it can solve

major problems.

20



Nest

Figure 6: The toroidal gridworld.

The robot senses x = (i; n; f; p). i is whether the robot is carrying food

or not, and takes values 0 (not carrying) and 1 (carrying). n is the direction

(but not distance) of the nest, and takes values 0-7 (compass directions, see

Figure 7), and 8 (when at the nest). f is the direction of the nearest visible

food (within a small radius of RADIUS squares around the robot), and takes

values 0-8, and 9 (no food within the radius). Similarly, p is the direction of the

nearest predator within the radius, and takes values 0-9.

The robot takes actions a, which take values 0-7 (move in that direction)

and 8 (stay still).

5.2.1 The �tness function

Encountering a predator doesn't end the run - rather, we leave it to the �tness

function to decide how serious encountering a predator is. Over a number of

runs, we record the average amount of food foraged per run F , and the average

number of predator encounters per run P , and score the �tness:

�tness = C

F

F � C

P

P

where C

F

and C

P

are some positive constants.

In the experiments we now describe, SIZE=10, NOFOOD=4, NOPREDA-

TORS=1, and RADIUS = 3.2. We set STEPSPERRUN=50. We can only see

locally, and have no memory, so this more or less guarantees that no strategy,

hand-coded or evolved/learnt, will always forage all 4 pieces of food before the

run ends. The theoretical maximum �tness 4C

F

will not therefore be seen.

21



87 3

6 5 4

0 1 2

9 (not visible)

(here)

Figure 7: The robot senses the relative direction of things within a small radius

around it (with the exception of the nest, whose direction it senses from any

distance).

5.3 Hand-coded programs

First, we try to explicitly program the robot to do the task, to get a benchmark

against which to compare the performance of evolved versions. We start with

C

F

= 100, C

P

= 1, and write a program PROG1 which, given a state x,

generates action a as follows:

programmedAction ( state x )

{

if (not carrying)

{

if (food visible)

a := directionFood;

else

a := randomMove();

}

else

a := directionNest;

}

PROG1 takes no action to avoid encountering predators.

As we increase the ratio of C

P

to C

F

, it begins to pay to have a robot which

takes at least some predator-avoiding action. Note that all strategies, hand-

coded or evolved/learnt, must deal with the fact that there is no memory. We

think up of a new algorithm, PROG2, which works as follows. If PROG1 wants

to go in the exact direction of a predator, the direction it suggested is perturbed

slightly (by �1). The result of any predator-avoidance has to be, of course, a

drop in the e�ciency of food-foraging.

As we increase C

P

further, we need to think of new and stronger predator-

avoiding algorithms. PROG3 abandons any attempt at food-foraging altogether

when a predator is visible, and moves randomly, hoping to shake it o�. If no

predators are visible, it behaves like PROG1.

22



Since robot and predators move simultaneously, and a predator's next move-

ment is unpredictable (even if it wasn't random, we have no memory of its pre-

vious motion), the only really sure strategy is moving away from it. PROG4

works like PROG3 except, instead of moving randomly, it moves in the broad

opposite direction to the observed predator.

We test each program over 500 runs. As we can see, which algorithm is best

depends on the parameters of the �tness function. The best performer for each

�tness function is highlighted:

PROG1 PROG2 PROG3 PROG4

F P F P F P F P

3.516 0.488 3.468 0.238 2.844 0.138 2.990 0.006

CF CP max fitness: fitness: fitness: fitness:

fitness:

100 1 400 [351.112] 346.562 284.262 298.994

10 1 40 [34.672] 34.442 28.302 29.894

1 1 4 3.028 [3.230] 2.706 2.984

1 10 4 -1.364 1.088 1.464 [2.930]

1 100 4 -45.284 -20.332 -10.956 [2.390]

5.4 Evolved W-collections

We want to de�ne a space of agent-collections which will encompass a very

broad range of robot behaviors. Consider the space of collections of 3 agents

A

f

; A

n

; A

p

, one of each of these types:

FoodSensingAgent

x = (i,f), state-space size 20

reward function:

reward()

{

if (just picked up food) return r1

else return r2

}

NestSensingAgent

x = (n), state-space size 9

reward function:

reward()

{

if (just arrived at nest) return r3

else return r4

}

PredatorSensingAgent

x = (p), state-space size 10

reward function:

reward()

{

if (just shook off predator (no longer visible)) return r5

else return r6

}

for di�erent values of r

1

; : : : ; r

6

, in the range r

min

= 0 to r

max

= 2. This

de�nes a huge range of possible robots, including ones containing food-seekers,

food-avoiders, predator-seekers, predator-avoiders that are stronger than food-

seekers, food-seekers that are stronger than predator-avoiders, and so on. Can

23



all worthwhile robot behaviors be generated here? Or are there useful behaviors

which only more complex reward functions and/or combinations of agents can

yield? We do not know the answer, but we search this space anyway, hoping

that it is big enough to contain solutions that are near-optimal.

The genotype encodes the 6 real numbers as 6 initially-random bitstrings.

Once it has been constructed from the genotype, the robot does 1800 runs

during which the agents learn their Q-values and W-values with a temperature

(recall Section 2.1.4) that starts high and declines throughout. We use 
 = 0:7

and ! = 3. The robot then does a test of 200 runs at minimum temperature to

score the �tness of what has been learnt.

Note that while the robot's x = (i; n; f; p) de�nes a state-space of size 1800,

none of the agents work with this large space, though it remains the `virtual'

�eld on which they compete.

After only quick evolutionary searches (population size � 60, initially ran-

domised, evolving for � 15 generations), we found the following W-collections.

The table shows, for the di�erent �tness functions, the best solution (set of 6

rewards) found by evolution, and in each solution, the division of the full (size

1800) statespace between the agents:

percentage

CF CP max best evolved W-collection ownership

fitness r1 r2 r3 r4 r5 r6 Af-An-Ap F P fitness

100 1 400 EVO1 1.73 0.11 0.41 0.26 1.37 1.20 49-35-16 3.650 0.410 [364.590]

10 1 40 EVO1 1.73 0.11 0.41 0.26 1.37 1.20 49-35-16 3.650 0.410 [36.090]

1 1 4 EVO1 1.73 0.11 0.41 0.26 1.37 1.20 49-35-16 3.650 0.410 [3.240]

1 10 4 EVO2 1.93 0.28 0.26 0.07 1.99 0.76 35-16-49 2.990 0.015 [2.840]

1 100 4 EVO3 1.46 0.62 0.22 0.07 1.92 0.12 20-16-63 2.605 0.000 [2.605]

5.4.1 Analysis of EVO1

Our �rst level of analysis produces no surprises: r

1

> r

2

, r

3

> r

4

and r

5

> r

6

throughout. That is, all successful robots are composed of a food-seeker, a

nest-seeker, and a predator-avoider.

We start with the 6 decoded rewards, and random Q-values and W-values.

Q-learning and W-learning progress, each agent translating what is happening

into its own subspace. For example (using the notation x,a -> y):

robot.transition (0,8,5,1),(5) -> (1,1,9,9)

food.transition (0,5),(5) -> (1,9)

nest.transition (8),(5) -> (1)

predator.transition (1),(5) -> (9)

The next level of analysis looks at who �nally wins each state. In EVO1,

A

f

wins almost the entire space where i = 0 (not carrying). In the space where

i = 1 (carrying), A

n

wins if p = 9 (no predator visible). Where a predator is

visible, the space is split between A

n

and A

p

.

For example, here are the owners of the area of statespace where p = 7. The

agents A

f

; A

n

; A

p

are represented by the symbols o, NEST, pred respectively.

States which have not (yet) been visited are marked with a dotted line:

24



---- p=7: ----

i=0:

f=0 o o o o o o o o o

f=1 o o o o o o o o o

f=2 o o o o o o o o o

f=3 o o o o o o o o o

f=4 o o o o o o o o o

f=5 o o o o o o o o o

f=6 o o o o o o o o o

f=7 o o o o o o o o o

f=8 ------------------------------------------------------------------------

f=9 o o NEST o NEST o o o o

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

i=1:

f=0 NEST pred NEST pred NEST NEST NEST NEST --------

f=1 NEST NEST NEST pred NEST pred NEST NEST --------

f=2 pred NEST NEST pred NEST pred NEST pred --------

f=3 NEST pred NEST NEST NEST pred NEST pred --------

f=4 NEST pred NEST NEST NEST NEST NEST pred --------

f=5 NEST pred NEST pred NEST pred NEST NEST --------

f=6 NEST pred NEST NEST NEST pred NEST pred --------

f=7 NEST pred NEST pred NEST pred NEST NEST --------

f=8 NEST NEST NEST pred NEST pred NEST NEST --------

f=9 NEST o NEST NEST NEST pred NEST NEST --------

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

Here are all the W-values of all the agents, sorted to show who beats who.

The W-values W

f

((i; f));W

n

((n));W

p

((p)) are represented by food.W(i,f),

nest.W(n), predator.W(p) respectively:

food.W(0,0) 0.195

food.W(0,1) 0.183

food.W(0,7) 0.144

food.W(0,5) 0.114

food.W(0,2) 0.097

food.W(0,6) 0.094

food.W(0,3) 0.089

food.W(0,9) 0.087

food.W(0,4) 0.084

nest.W(6) 0.083

nest.W(2) 0.074

nest.W(4) 0.058

nest.W(0) 0.041

predator.W(1) 0.037

predator.W(0) 0.021

predator.W(2) 0.018

predator.W(3) 0.016

nest.W(8) 0.016

predator.W(7) 0.013

nest.W(7) 0.012

predator.W(5) 0.011

nest.W(1) 0.006

predator.W(4) 0.004

predator.W(6) 0.001

nest.W(3) 0.001

food.W(0,8) 0.000 (never visited)

nest.W(5) -0.000

predator.W(8) -0.003

predator.W(9) -0.008

food.W(1,9) -0.008

food.W(1,6) -0.026

food.W(1,1) -0.027

25



food.W(1,3) -0.031

food.W(1,5) -0.032

food.W(1,2) -0.033

food.W(1,7) -0.036

food.W(1,0) -0.036

food.W(1,4) -0.045

food.W(1,8) -0.098

The next level of analysis is what actions the robot actually ends up execut-

ing as a result of this resolution of competition. When not carrying food, A

f

is in charge, and it causes the robot to wander, and then head for food when

visible. A

n

is constantly suggesting that the robot return to the nest, but its

W-values are too weak. Then, as soon as i = 1, A

f

's W-values drop below zero,

and A

n

�nds itself in charge. As soon as it succeeds in taking the robot back to

the nest, i = 0 and A

f

immediately takes over again. In this way the two agents

combine to forage food, even though both are pursuing their own agendas.

The �nal level of analysis is why the W-values turn out the way they do.

We can see, for example, that when i = 1 (carrying food), A

f

is a long way

o� from getting a reward, since it has to lose the food at the nest �rst. And

it cannot learn how to do this since (n) is not in its statespace. A

f

ends up in

a state of dependence on A

n

, which actually knows better than A

f

the action

that is best for it.

So why not get rid of A

n

and simply supply A

f

with the space x = (i; n; f)?

Because it is more e�cient if we can use two agents with statespaces of size 20

and 9 respectively (total memory required = 29) instead of one with a statespace

of size 180 (total memory required = 180).

5.4.2 Analysis of EVO2

Turning to EVO2, the contrast is dramatic. Here is that same area of statespace:

---- p=7: ----

i=0:

f=0 o o pred o o o o o o

f=1 pred pred o pred pred pred pred pred pred

f=2 pred pred pred pred pred o pred pred pred

f=3 pred pred pred o pred pred pred o pred

f=4 o o o o o o pred o o

f=5 pred o o pred pred pred pred pred o

f=6 o o o o o o o o o

f=7 pred o o o o pred o o o

f=8 ------------------------------------------------------------------------

f=9 pred pred pred pred pred pred pred pred pred

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

i=1:

f=0 pred pred pred pred pred pred pred pred --------

f=1 pred pred pred pred pred pred pred pred --------

f=2 pred pred pred pred pred pred pred pred --------

f=3 pred pred pred pred pred pred pred pred --------

f=4 pred pred pred pred pred pred pred pred --------

f=5 pred pred pred pred pred pred pred pred --------

f=6 pred pred pred pred pred pred pred pred --------

f=7 pred pred pred pred pred pred pred pred --------

f=8 pred pred pred pred pred pred pred pred --------

f=9 pred pred pred pred pred pred pred pred --------

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

26



A

p

mainly dominates when a predator is visible in directions 0-7. In partic-

ular, in that space A

f

loses the crucial state (0; 9). In the special case p = 8,

all directions are equal as far as A

p

is concerned, and A

f

and A

n

are allowed

compete to take the action. When p = 9, A

f

and A

n

�ght it out as if A

p

wasn't

there. They end up combining to forage.

5.5 Discussion

The 6 rewards de�ne a vast space of possible robots, in which, for example, we

can �nd pretty close approximations to PROG1 and PROG4.

As conditions change, we can move continuously through this space by vary-

ing the numerical rewards (their size, and the di�erences between them), so

varying each agent's possession of state-space in a continuous manner. This

is an alternative to the programmed approach where we have to specify and

hand-code perhaps widely di�erent logic for each situation.

To a certain extent also, we have 3 independent and quite simple parts, with

much of the complexity arising from all the di�erent ways in which they can

interact.

6 Summary and conclusion

We have shown that for any given collection of Q-learners, there is what can

be described as a `natural' action-selection scheme. We avoid the problem of

de�ning the 
ow of control by having it follow naturally once the collection of

agents is speci�ed.

W-learning resolves competition without resorting to devices such as killing

o� agents that are disobeyed for time t, without any W !1, and in fact with

normally most W �W

max

.

Finally, W-learning is fair resolution of competition - the most likely winner

of a state is the agent that is most likely to su�er the highest deviation if it does

not win.

We have demonstrated a few interesting examples, but it is clear that the

space of competing agent-collections has only barely begun to be explored.

Acknowledgements

I am most indebted to Barney Pell for introducing me to reinforcement learning.

Thanks to my supervisor John Daugman, credit to Gavin Rummery for an

improvement to the original algorithm, and thanks also to Ralph Becket, Marcel

Hernandez, Steve Hodges, Dave Palfrey, Michael K.Sahota and Chen K.Tham

for valuable comments.

This research was supported in part by a British Council scholarship and in

part by the University of Cambridge Computer Laboratory.

A Bounds

A.1 Bounds with �

Let R be bounded by R

max

,R

min

. Let X be updated by:

27



X := (1� �)X + �R

where the initial value of � = 1. Then:

Lemma A.1.1 X is also bounded by R

max

,R

min

.

Proof: Standard result.

A.2 Bounds of Q-values

Lemma A.2.1

Q

max

=

r

max

1�


Q

min

=

r

min

1�


Proof: Standard result.

Note that since r

min

< r

max

, it follows that Q

min

< Q

max

.

A.3 Bounds of W-values

Lemma A.3.1

W

max

= Q

max

�Q

min

W

min

= �(Q

max

�Q

min

)

Proof: W is updated by:

W (x) := (1� �

W

)W (x) + �

W

�(Q(x; a)� (r + 
max

b2A

Q(y; b)))

where 0 � � � 1, so by Lemma A.1.1:

W

max

= (�(Q� (r + 
Q)))

max

= 1(Q

max

� (r + 
Q)

min

)

= Q

max

�Q

min

Similarly:

W

min

= 1(Q

min

�Q

max

)

Note that since Q

min

< Q

max

, it follows that W

min

< 0 < W

max

.

B Incremental sampling of random variables

B.1 A single variable

Let d

1

; d

2

; d

3

; : : : be samples of a stationary random variable d with expected

value E(d). Then the following update algorithm provides an elegant way of

sampling them. Repeat:

W := (1� �)W + �d

i

28



Lemma B.1.1 If � takes successive values 1;

1

2

;

1

3

; : : :, then W ! E(d), inde-

pendent of the initial value of W .

Proof: This is a standard result, but I include the proof here to illustrate

how the learning rate � works. W 's updates go:

W := 0W

init

+ 1d

1

= d

1

W :=

1

2

d

1

+

1

2

d

2

=

1

2

(d

1

+ d

2

)

W :=

2

3

1

2

(d

1

+ d

2

) +

1

3

d

3

=

1

3

(d

1

+ d

2

+ d

3

)

W :=

3

4

1

3

(d

1

+ d

2

+ d

3

) +

1

4

d

4

=

1

4

(d

1

+ d

2

+ d

3

+ d

4

)

� � �

W =

1

t

(d

1

+ � � �+ d

t

)

i.e. W is simply the average of all d

i

samples so far. If this continues forever,

then W ! E(d).

More generally:

Lemma B.1.2 If � takes successive values

1

t

;

1

t+1

;

1

t+2

; : : :, then W ! E(d),

independent of the initial value of W , and independent of t.

Proof: Similar to proof of Lemma B.1.1.

One way of looking at this is to consider W

init

as the average of all samples

before time t, samples which are now irrelevant for some reason. We can consider

them as samples from a di�erent distribution f :

W

init

=

1

t� 1

(f

1

+ � � �+ f

t�1

)

Hence:

W =

1

n

(f

1

+ � � �+ f

t�1

+ d

t

+ � � �+ d

n

)

=

1

n

(f

1

+ � � �+ f

t�1

) +

1

n

(d

t

+ � � �+ d

n

)

! 0 +E(d)

as n!1.

References

[Ackley and Littman, 1991] Ackley, David and Littman, Michael (1991), Interactions

between learning and evolution, in Christopher G.Langton et al., eds., Arti�cial

Life II.

[Blumberg, 1994] Blumberg, Bruce (1994), Action-Selection in Hamsterdam: Lessons

from Ethology, in Dave Cli� et al., eds., Proceedings of the Third International

Conference on Simulation of Adaptive Behavior (SAB-94).

[Brooks, 1986] Brooks, Rodney A. (1986), A robust layered control system for a mobile

robot, IEEE Journal of Robotics and Automation vol.RA-2, no.1, Mar 1986.

[Brooks, 1991] Brooks, Rodney A. (1991), Intelligence without Representation, Arti-

�cial Intelligence 47:139-160.

[Brooks, 1994] Brooks, Rodney A. (1994), Coherent Behavior from Many Adaptive

Processes, in Dave Cli� et al., eds., Proceedings of the Third International Confer-

ence on Simulation of Adaptive Behavior (SAB-94).

[Collins, 1992] Collins, Robert J. (1992), Studies in Arti�cial Evolution, PhD thesis,

UCLA.

29



[Dawkins, 1986] Dawkins, Richard (1986), The Blind Watchmaker, Penguin Books.

[Edelman, 1989] Edelman, Gerald M. (1989), The Remembered Present: A Biological

Theory of Consciousness, Basic Books.

[Edelman, 1992] Edelman, Gerald M. (1992), Bright Air, Brilliant Fire: On the Mat-

ter of the Mind, Basic Books.

[Goldberg, 1989] Goldberg, David E. (1989), Genetic Algorithms: in search, optimiza-

tion, and machine learning, Addison-Wesley.

[Harvey et al., 1993] Harvey, Inman; Husbands, Phil; and Cli�, Dave (1993), Issues in

Evolutionary Robotics, in Jean-Arcady Meyer et al., eds., Proceedings of the Second

International Conference on Simulation of Adaptive Behavior (SAB-92).

[Harvey et al., 1994] Harvey, Inman; Husbands, Phil; and Cli�, Dave (1994), Seeing

The Light: Arti�cial Evolution, Real Vision, in Dave Cli� et al., eds., Proceedings of

the Third International Conference on Simulation of Adaptive Behavior (SAB-94).

[Holland, 1975] Holland, John H. (1975), Adaptation in Natural and Arti�cial Sys-

tems, Ann Arbor, Univ. Michigan Press.

[Kaelbling, 1993] Kaelbling, Leslie Pack (1993), Learning in Embedded Systems, The

MIT Press/Bradford Books.

[Koza, 1991] Koza, John R. (1991), Genetic evolution and co-evolution of computer

programs, in Christopher G.Langton et al., eds., Arti�cial Life II.

[Langton, 1989] Langton, Christopher G. (1989), Arti�cial Life, in Christopher

G.Langton, ed., Arti�cial Life.

[Lin, 1993] Lin, Long-Ji (1993), Scaling up Reinforcement Learning for robot control,

Proceedings of the Tenth International Conference on Machine Learning.

[Maes, 1989] Maes, Pattie (1989), The dynamics of action selection, Proceedings of

the 11th International Joint Conference on Arti�cial Intelligence (IJCAI-89).

[Minsky, 1986] Minsky, Marvin (1986), The Society of Mind, Simon and Schuster, New

York.

[Moore, 1990] Moore, Andrew W. (1990), E�cient Memory-based Learning for Robot

Control, PhD thesis, University of Cambridge, Computer Laboratory.

[Sahota, 1994] Sahota, Michael K. (1994), Action Selection for Robots in Dynamic En-

vironments through Inter-behaviour Bidding, in Dave Cli� et al., eds., Proceedings

of the Third International Conference on Simulation of Adaptive Behavior (SAB-

94).

[Sims, 1994] Sims, Karl (1994), Evolving 3D Morphology and Behavior by Competi-

tion, in Rodney A.Brooks and Pattie Maes, eds., Arti�cial Life IV.

[Singh, 1992] Singh, Satinder P. (1992), Transfer of Learning by Composing Solutions

of Elemental Sequential Tasks, Machine Learning 8:323-339.

[Sutton, 1988] Sutton, Richard S. (1988), Learning to Predict by the Methods of Tem-

poral Di�erences, Machine Learning 3:9-44.

[Tan, 1993] Tan, Ming (1993), Multi-Agent Reinforcement Learning: Independent vs.

Cooperative Agents, Proceedings of the Tenth International Conference on Machine

Learning.

[Tham and Prager, 1994] Tham, Chen K. and Prager, Richard W. (1994), A modu-

lar Q-learning architecture for manipulator task decomposition, Proceedings of the

Eleventh International Conference on Machine Learning.

[Watkins, 1989] Watkins, Christopher J.C.H. (1989), Learning from delayed rewards,

PhD thesis, University of Cambridge, Psychology Department.

[Watkins and Dayan, 1992] Watkins, Christopher J.C.H. and Dayan, Peter (1992),

Technical Note: Q-Learning, Machine Learning 8:279-292.

30


