
Towards self-organising action selection

Mark Humphrys

University of Cambridge, Computer Laboratory

�

http://www.cl.cam.ac.uk/users/mh10006

Abstract

Systems with multiple parallel goals (e.g. autonomous mobile robots)

have a problem analogous to that of action selection in ethology. Archi-

tectures such as the subsumption architecture (Brooks) involve multiple

sensing-and-acting agents within a single robot, more than one of which

is capable of controlling the robot on its own if allowed. Which to give

control to at a given moment is normally regarded as a (di�cult) problem

of design. In a quest for a scheme where the agents decide for themselves

in a sensible manner, I introduce a model where the agents are not only

autonomous but are in full competition with each other for control of the

robot. Interesting robots are ones where no agent achieves total victory,

but rather a series of compromises are reached. Having the agents oper-

ate by the reinforcement learning algorithm Q-learning (Watkins) allows

the introduction of an algorithm called `W-learning', by which the agents

learn to focus their competitive e�orts in a manner similar to agents with

limited spending power in an economy. In this way, the population of

agents organises its own action selection in a coherent way that supports

parallelism and opportunism. In the empirical section, I show how the rel-

ative inuence an agent has on its robot may be controlled by adjusting

its rewards. The possibility of automated search of agent-combinations is

considered.

Keywords: reactive systems, action selection, autonomous mobile robots, rein-

forcement learning, multi-module learning

1 Action selection

It is generally accepted in ethology that animals have multiple competing desires

or goals, among which attention must endlessly switch. The animal must solve

the problem of action selection - the choosing of the appropriate goal to pursue

or desire to satisfy at a given moment in time, given the state of the external

world.

In recent years, roboticists (and other AI workers) have become interested

in models of such systems with multiple parallel goals.

�

postal address: University of Cambridge, Computer Laboratory, New Museums Site, Pem-

broke St., Cambridge CB2 3QG, England. tel: +44 1223 335443. fax: +44 1223 334678 or

334679. email: Mark.Humphrys@cl.cam.ac.uk

1

I

O

agent

agent

agent

agent

.

Figure 1: Competition among sel�sh peer agents in a horizontal architecture.

Each agent suggests an action, but only one action is executed. Which agent is

obeyed changes dynamically.

1.1 The subsumption architecture

Brooks [Brooks, 1986, Brooks, 1991] introduces an architecture for building au-

tonomous mobile robots which he calls the subsumption architecture.

He builds in layers: layer 1 is a simple complete working system, layers

1-2 together form a complete, more sophisticated system, layers 1-3 together

form a complete, even more sophisticated system, and so on. Lower layers do

not depend on the existence of higher layers, which may be removed without

problem. The subsumption architecture develops some interesting ideas:

� The concept of default behavior. e.g.the `Avoid All Things' layer 1 takes

control of the robot by default whenever the `Look For Food' layer 2 is

idle.

� Multiple parallel goals. There are multiple candidates competing to be

given control of the robot, e.g. control could be given to layer 1, which

has its own purposes, or to layer 5, which has di�erent purposes (and may

use layers 1-4 to achieve them). Which to give control to may not be an

easy decision - one can imagine goals which are directly-competing peers.

Multiple parallel goals are seen everywhere in nature, e.g.the conict be-

tween feeding and vigilance in any animal with predators.

� The concept of multiple independent channels connecting sensing to ac-

tion.

1.2 Competition among sel�sh agents

I introduce a model (Figure 1) with the following features:

� Make the layers peers, so that each can function in the absence of all

the others. Now they are fully autonomous sensing-and-acting agents

[Minsky, 1986], not ordered in any hierarchy, but rather in a loose collec-

tion.

2

� Have them compete for control, having to make a case that they should be

given it. One will win, having its action executed, then they will compete

again for the next action to be executed, and so on inde�nitely.

A simple scheme would be one where each agent suggests its action with a

strength (or Weight) W , expressing how important it is to their purposes that

they be obeyed at this moment, and the robot executes the action that comes

with the largest W .

To be precise, each agent A

i

maintains a table of W-values W

i

(x). Given a

state x, each agent A

i

suggests some action a

i

(x) with weightW

i

(x), The robot

executes action a

k

(x) where:

W

k

(x) = max

i21;:::;n

W

i

(x)

We call A

k

the leader in the competition for state x at the moment, or the

owner of x at the moment.

We can draw a map of the state-space, showing for each state x, which

agent succeeds in getting its action executed. Clearly, a robot in which one

agent achieves total victory (wins the whole state-space) is not very interesting.

Rather, interesting robots are ones where the state-space is fragmented among

di�erent agents.

1.2.1 W-values as action selection

This is a winner-take-all action selection scheme - that is, the winner gets its

exact action executed (as opposed to a scheme where the actions of agents are

merged). This corresponds to the classical view in ethology that at any one time,

only one behavior system is being expressed in the movements of the animal.

The division of control here is state-based rather than time-based. Blumberg

[Blumberg, 1994] argues the need for a model of fatigue, where a switch of

activity becomes more likely the longer an activity goes on. He points out that

animals sometimes appear to engage in a form of time-sharing. It is not clear

however, that these e�ects cannot be achieved by a suitable state representation

x. If an activity goes on for long enough, some internal component of x (that

is, some internal sense, e.g.`hunger') may change, leading to a new x and a

potential switch in activity.

For example, consider the conict between feeding and body maintenance

(discussed by Blumberg). Some action selection schemes assign priorities to

entire activities, and then worry about how low-priority cleaning is ever going

to be able to interrupt feeding. In our scheme, let x = (e; i) be the state, where

e is information from external sensors and i = (f; c) is information from internal

sensors, where f takes values 2 (very hungry), 1 (hungry) and 0 (not hungry)

and c takes values 2 (very dirty), 1 (dirty) and 0 (clean). The `Food' agent

suggests actions with weight W

f

(x). The `Clean' agent suggests actions with

weight W

c

(x). We should �nd that for a given e; c:

W

f

((e; (2; c))) > W

f

((e; (1; c))) > W

f

((e; (0; c)))

and for a given e; f :

W

c

((e; (f; 2))) > W

c

((e; (f; 1))) > W

c

((e; (f; 0)))

3

A very strong `Food', only rarely interrupted by `Clean', would be repre-

sented by, for a given e:

W

f

((e; (2; c))) > W

f

((e; (1; c))) > W

c

((e; (f; 2)))

> W

f

((e; (0; c))) > W

c

((e; (f; 1))) > W

c

((e; (f; 0)))

For agents to be able to generate their own W-values, we need a scheme

whereby they attach some kind of numerical `�tness' value to the actions they

wish to take. Previous work in action selection has regarded assigning such val-

ues as a problem of design. In the literature, one sees formulas taking weighted

sums of various quantities in an attempt to estimate the utility of actions. There

is much hand-coding and tuning of parameters (for example, see [Tyrrell, 1993,

Ch.9]) until the designer is satis�ed that the formulas deliver utility estimates

that are fair.

In fact, there is a way that these utility values can come for free. Learning

methods that automatically assign values to actions are common in the �eld of

reinforcement learning.

2 Reinforcement Learning

2.1 Q-learning

Watkins [Watkins, 1989] introduces a method of reinforcement learning which

he calls Q-learning. The agent exists within a world that can be modelled as a

Markov decision process (MDP). It observes discrete states of the world x (2 X ,

a �nite set) and can execute discrete actions a (2 A, a �nite set). Each discrete

time step, it observes state x, takes action a, observes new state y, and receives

immediate reward r. P

xa

(y) is the probability that doing a in x will lead to

state y and P

xa

(r) is the probability that doing a in x will generate reward r.

The agent is not interested just in immediate rewards, but in the total dis-

counted reward. In this measure, rewards received n steps into the future are

worth less than rewards received now, by a factor of

n

where 0 � < 1:

R = r

t

+ r

t+1

+

2

r

t+2

+ � � �

The strategy that the Q-learning agent adopts is to build up Quality-values

(Q-values) for each pair (x; a). In 1-step Q-learning, after each experience, we

update:

Q(x; a) := (1� �)Q(x; a) + �(r + max

b2A

Q(y; b)) (1)

where the learning rate �, 0 � � � 1, takes decreasing (with each update)

successive values �

1

; �

2

; �

3

: : :, such that

P

1

i=1

�

i

=1 and

P

1

i=1

�

2

i

<1.

If each pair (x; a) is visited an in�nite number of times, then Q-learning

converges to a unique set of values Q(x; a) = Q

�

(x; a) which de�ne a stationary

deterministic optimal policy [Watkins and Dayan, 1992].

The optimal policy is de�ned by �

�

(x) = a

�

(x) where:

V

�

(x) = Q

�

(x; a

�

(x))

= max

b2A

Q

�

(x; b)

4

2.2 Competition among sel�sh Q-learners

I use Q-learning as the mode of operation of the competing sel�sh agents in my

model. Each agent is a Q-learning agent, with its own set of Q-values and more

importantly, with its own reward function.

To formalise, each agent A

i

receives rewards r

i

from a personal distribution

P

i

xa

(r). The distribution P

xa

(y) is a property of the world - it is common across

all agents. Each agent A

i

maintains personal Q-values Q

i

(x; a) and W-values

W

i

(x).

The basic criterion for generating W-values is that we don't want all W !

W

max

. We want the agents to not �ght equally for all states, but rather discrim-

inate depending on x. We need something akin to an economy, where agents

have �nite spending power and must choose what to spend it on.

Consider what happens when agent A

i

is not obeyed. If it is not obeyed,

the actions chosen will not be random - they will be actions desirable to other

agents. It will depend on the particular collection what these actions are, but

they may overlap in places with its own suggested actions. If another agent

happens to be promoting the same action as A

i

, then A

i

does not need to be

obeyed. Or more subtly, the other agent might be suggesting an action which is

almost-perfect for A

i

, while if A

i

's exact action succeeded, it would be disastrous

for the other agent, which would �ght it all the way.

2.2.1 W = (P �A)

What we really need to express in W is the di�erence between predicted reward

P (what is predicted if we are listened to) and actual reward A (what actually

happened). What happens when we are not listened to depends on what the

other agents are doing. I introduce an algorithm called W-learning for building

up W-values that express this di�erence.

3 W-learning

Consider Q-learning as the process:

P := (1� �

Q

)P + �

Q

(A)

Then W-learning is:

W := (1� �

W

)W + �

W

(P �A)

For updating the Q-values, only one agent (the leader A

k

) suggested the

executed action a

k

. However, all agents can learn from the transition (under

their own di�erent reward functions). We update for all i:

Q

i

(x; a

k

) := (1� �

Q

)Q

i

(x; a

k

) + �

Q

(r

i

+ max

b2A

Q

i

(y; b)) (2)

For the W-values, we only update the agents that were not obeyed. We

update for i 6= k:

W

i

(x) := (1� �

W

)W

i

(x) + �

W

(Q

i

(x; a

i

)� (r

i

+ max

b2A

Q

i

(y; b))) (3)

5

The reason why we do not update W

k

(x) is explained later (Section 3.3). In

(object-oriented) pseudo-code, the W-learning system is, every time step:

state x := observe();

for (all i)

a[i] := A[i].suggestAction(x);

find k

execute (a[k]);

state y := observe();

for (all i)

{

r[i] := A[i].reward(x,y);

A[i].updateQ (x, a[k], y, r[i]);

if (i != k)

A[i].updateW (x, a[i], y, r[i]);

}

Alternatively [Sutton, 1988], consider Q-learning as the process:

P := P + �

Q

(A�P)

Then W-learning is:

W :=W + �

W

((P �A)�W)

3.1 After Q has been (somewhat) learnt

As Q is learnt, the update for A

i

, i 6= k, is approximated by:

W

i

(x) := (1� �

W

)W

i

(x) + �

W

(V

�

i

(x)� (r

i

+ V

�

i

(y)))

where r

i

and y are caused by the leader A

k

.

We can write this as:

W

i

(x) := (1� �

W

)W

i

(x) + �

W

d

ki

(x)

where the random variable d

ki

(x) is the `deviation' (di�erence between pre-

dicted P and actual A) that A

k

causes for A

i

in state x if both are converged

to their respective Q

�

. Note that:

E(d

ki

(x)) = V

�

i

(x) � (E(r

i

) + E(V

�

i

(y)))

= V

�

i

(x) �

�

P

r

rP

i

xa

(r) +

P

y

V

�

i

(y)P

xa

(y)

�

where a = a

�

k

(x). We expect:

E(d

kk

(x)) = 0

and we expect for i 6= k:

E(d

ki

(x)) � 0

If A

k

leads from the start to in�nity, then:

6

W

i

(x) ! E(d

ki

(x))

� 0

Of course, it may be interrupted, as some new agent takes the lead. If A

i

itself takes the lead, then W-learning stops for it until (if ever) it loses it. If

another agent A

l

takes the lead, then A

i

will suddenly be taking samples from

the distribution d

li

(x). If we update forever from this point, then W

i

(x)

eventually converges to the expected value of the new distribution:

W

i

(x)! E(d

li

(x))

3.2 Convergence of W-learning

Essentially, the reason why W-learning converges is that for the leader to keep

on changing, W must keep on rising. And while there may be statistical vari-

ations in any �nite sample, in the long run the expected values must emerge.

Competition will be resolved when some agent A

k

, as a result of the deviations

it su�ers in the earlier stages of W-learning, accumulates a high enough W-value

W

k

(x) such that:

8i; i 6= k; W

i

(x)! E(d

ki

(x)) < W

k

(x)

A

k

wins because it has su�ered a greater deviation in the past than any

expected deviation it is now causing for the other agents. For more detailed

analysis see [Humphrys, 1995].

3.3 Scoring W

k

(x)

Should we score W if obeyed as well? If we do, then:

W

k

(x) ! E(d

kk

(x))

= 0

The leader's W is converging to zero, while the other agents' W 's are con-

verging to E(d

ki

(x)) � 0. They are guaranteed to catch up with it. So there

will be no resolution of the competition ever.

4 Empirical Work

We can take hand-picked combinations of agents and see how they resolve their

competition. Alternatively, we can use the fact that any combination of agents

will resolve their competition, and do an automated search looking for interest-

ing combinations.

Starting with any n agents with any reward functions (leading to any con-

verged Q-values), W-learning will eventually converge and the agents will have

permanently divided up state-space between them. So we can de�ne spaces of

possible robot architectures where every point in the space represents a robot

that can be built and tried out (for the best exposition of this concept see

[Dawkins, 1986, Ch.3]). Such a space can be searched in a systematic manner, or

in a stochastic manner similar to evolution by natural selection [Langton, 1989].

7

Nest

Figure 2: The toroidal gridworld.

4.1 The Simulated World

The problem I set for my W-learning simulated robot is the conict between

seeking food and avoiding moving predators on a simple simulated landscape

(Figure 2). The world is a toroidal (SIZE x SIZE) gridworld containing a nest,

a number (NOFOOD) of stationary, randomly-distributed pieces of food, and

a number (NOPREDATORS) of randomly-moving dumb predators. World,

evolution and learning are all implemented in C++.

Each timestep, the robot can move one square or stay still. When it �nds

food, it picks it up. It can only carry one piece of food at a time, and it can

only drop it at the nest. The task for the robot is to forage food (i.e. �nd it,

and bring it back to the nest) while avoiding the predators.

The robot senses x = (i; n; f; p), where:

� i is whether the robot is carrying food or not, and takes values 0 (not

carrying) and 1 (carrying).

� n is the direction (but not distance) of the nest, and takes values 0-7 (the

eight main compass directions), 8 (when at the nest) and 9 (when the

nest is not visible within a small radius of RADIUS squares).

� f is the direction of the nearest visible food, taking values 0-9.

� p is the direction of the nearest visible predator, also taking values 0-9.

The robot takes actions a, which take values 0-7 (move in that direction)

and 8 (stay still).

8

4.2 Systematic search

We carry out a systematic search of various combinations of agents, looking for

combinations whose W-converged situation is adaptive.

We want to de�ne a space of agent-collections which will encompass a very

broad range of robot behaviors. Consider the space of collections of 3 agents

A

f

; A

n

; A

p

, one of each of these types:

FoodSensingAgent

x = (i,f), state-space size 20

reward function:

reward()

{

if (just picked up food) return r1

else return 0

}

NestSensingAgent

x = (n), state-space size 10

reward function:

reward()

{

if (just arrived at nest) return r2

else return 0

}

PredatorSensingAgent

x = (p), state-space size 10

reward function:

reward()

{

if (just shook off predator (no longer visible)) return r3

else return 0

}

for di�erent values of r

1

; r

2

; r

3

in the range r

min

= 0 to r

max

= 1. That

is, we're only interested in food-seekers, nest-seekers and predator-avoiders (we

assume that food-avoiders, predator-seekers, etc. are of no interest). Even so,

the range of possible behaviors of such a collection is vast. The behavior of the

collection as a whole will depend upon the relative sizes of each agent's reward

(hence how strong the agent will be in W-competitions, and how much of the

statespace it will win).

We do a systematic search of all combinations of r

1

; r

2

; r

3

2 f0:1; 0:3; 0:5; 0:7; 0:9g

(a total of 5

3

combinations). In the test, we calculate the average amount of

food foraged per 100 steps F and the average number of predator encounters

per 100 steps P . Here are the 10 best foragers:

F P

robot=[food(0.700),nest(0.100),predator(0.500)] scores: 7.220 0.050

robot=[food(0.700),nest(0.100),predator(0.300)] scores: 6.970 0.210

robot=[food(0.500),nest(0.100),predator(0.700)] scores: 6.670 0.090

robot=[food(0.900),nest(0.100),predator(0.300)] scores: 6.510 0.160

robot=[food(0.500),nest(0.100),predator(0.300)] scores: 5.860 0.050

robot=[food(0.500),nest(0.100),predator(0.900)] scores: 3.790 0.010

robot=[food(0.300),nest(0.100),predator(0.300)] scores: 3.300 0.030

robot=[food(0.700),nest(0.300),predator(0.500)] scores: 3.060 0.090

robot=[food(0.700),nest(0.300),predator(0.900)] scores: 2.380 0.080

robot=[food(0.900),nest(0.300),predator(0.700)] scores: 2.230 0.140

9

Here are the joint best predator-avoiders (all encountered no predators, they

are sorted in order of food foraged):

F P

robot=[food(0.300),nest(0.100),predator(0.900)] scores: 0.050 0.000

robot=[food(0.900),nest(0.100),predator(0.700)] scores: 0.060 0.000

robot=[food(0.300),nest(0.700),predator(0.900)] scores: 0.090 0.000

robot=[food(0.100),nest(0.300),predator(0.900)] scores: 0.150 0.000

robot=[food(0.300),nest(0.100),predator(0.700)] scores: 0.150 0.000

robot=[food(0.100),nest(0.100),predator(0.900)] scores: 0.300 0.000

robot=[food(0.100),nest(0.100),predator(0.500)] scores: 0.330 0.000

robot=[food(0.700),nest(0.100),predator(0.900)] scores: 0.340 0.000

robot=[food(0.700),nest(0.100),predator(0.700)] scores: 0.370 0.000

robot=[food(0.500),nest(0.500),predator(0.700)] scores: 1.090 0.000

4.2.1 MPEG Movie demo

An MPEG Movie demo of the best forager above can be viewed on the internet

at http://www.cl.cam.ac.uk/users/mh10006/w.html

4.3 Evolutionary search

Alternatively, we can use a Genetic Algorithm (GA) (from [Holland, 1975], for

an introduction see [Goldberg, 1989]) to search the space.

In this experiment, food does not grow. Instead, the robot makes a number

of runs, each of length STEPSPERRUN timesteps. Writing F as the aver-

age amount of food foraged per run and P as the average number of predator

encounters per run:

�tness = C

F

F � C

P

P

4.3.1 Evolved W-collections

We consider the space of collections of 3 agents A

f

; A

n

; A

p

, one of each of these

types:

FoodSensingAgent

reward()

{

if (just picked up food) return r1

else return r2

}

NestSensingAgent

reward()

{

if (just arrived at nest) return r3

else return r4

}

PredatorSensingAgent

reward()

{

if (just shook off predator (no longer visible)) return r5

else return r6

}

10

for r

1

; : : : ; r

6

in the range r

min

= 0 to r

max

= 2.

After only quick evolutionary searches we found the following W-collections.

The table shows, for the di�erent �tness functions, the best solution (set of 6

rewards) found by evolution, and in each solution, the division of the full (size

1800) statespace between the agents:

percentage

CF CP max best evolved W-collection ownership

fitness r1 r2 r3 r4 r5 r6 Af-An-Ap F P fitness

100 1 400 EVO1 1.73 0.11 0.41 0.26 1.37 1.20 49-35-16 3.650 0.410 [364.590]

10 1 40 EVO1 1.73 0.11 0.41 0.26 1.37 1.20 49-35-16 3.650 0.410 [36.090]

1 1 4 EVO1 1.73 0.11 0.41 0.26 1.37 1.20 49-35-16 3.650 0.410 [3.240]

1 10 4 EVO2 1.93 0.28 0.26 0.07 1.99 0.76 35-16-49 2.990 0.015 [2.840]

1 100 4 EVO3 1.46 0.62 0.22 0.07 1.92 0.12 20-16-63 2.605 0.000 [2.605]

4.3.2 Analysis of EVO1

Our �rst level of analysis produces no surprises: r

1

> r

2

, r

3

> r

4

and r

5

> r

6

throughout.

The next level of analysis looks at who �nally wins each state. In EVO1,

A

f

wins almost the entire space where i = 0 (not carrying). In the space where

i = 1 (carrying), A

n

wins if p = 9 (no predator visible). Where a predator is

visible, the space is split between A

n

and A

p

.

For example, here are the owners of the area of statespace where p = 7. The

agents A

f

; A

n

; A

p

are represented by the symbols o, NEST, pred respectively.

States which have not (yet) been visited are marked with a dotted line:

---- p=7: ----

i=0:

f=0 o o o o o o o o o

f=1 o o o o o o o o o

f=2 o o o o o o o o o

f=3 o o o o o o o o o

f=4 o o o o o o o o o

f=5 o o o o o o o o o

f=6 o o o o o o o o o

f=7 o o o o o o o o o

f=8 --

f=9 o o NEST o NEST o o o o

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

i=1:

f=0 NEST pred NEST pred NEST NEST NEST NEST --------

f=1 NEST NEST NEST pred NEST pred NEST NEST --------

f=2 pred NEST NEST pred NEST pred NEST pred --------

f=3 NEST pred NEST NEST NEST pred NEST pred --------

f=4 NEST pred NEST NEST NEST NEST NEST pred --------

f=5 NEST pred NEST pred NEST pred NEST NEST --------

f=6 NEST pred NEST NEST NEST pred NEST pred --------

f=7 NEST pred NEST pred NEST pred NEST NEST --------

f=8 NEST NEST NEST pred NEST pred NEST NEST --------

f=9 NEST o NEST NEST NEST pred NEST NEST --------

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

Here are all the W-values of all the agents, sorted to show who beats who.

The W-values W

f

((i; f));W

n

((n));W

p

((p)) are represented by food.W(i,f),

nest.W(n), predator.W(p) respectively:

11

food.W(0,0) 0.195

food.W(0,1) 0.183

food.W(0,7) 0.144

food.W(0,5) 0.114

food.W(0,2) 0.097

food.W(0,6) 0.094

food.W(0,3) 0.089

food.W(0,9) 0.087

food.W(0,4) 0.084

nest.W(6) 0.083

nest.W(2) 0.074

nest.W(4) 0.058

nest.W(0) 0.041

predator.W(1) 0.037

predator.W(0) 0.021

predator.W(2) 0.018

predator.W(3) 0.016

nest.W(8) 0.016

predator.W(7) 0.013

nest.W(7) 0.012

predator.W(5) 0.011

nest.W(1) 0.006

predator.W(4) 0.004

predator.W(6) 0.001

nest.W(3) 0.001

food.W(0,8) 0.000 (never visited)

nest.W(5) -0.000

predator.W(8) -0.003

predator.W(9) -0.008

food.W(1,9) -0.008

food.W(1,6) -0.026

food.W(1,1) -0.027

food.W(1,3) -0.031

food.W(1,5) -0.032

food.W(1,2) -0.033

food.W(1,7) -0.036

food.W(1,0) -0.036

food.W(1,4) -0.045

food.W(1,8) -0.098

The next level of analysis is what actions the robot actually ends up execut-

ing as a result of this resolution of competition. When not carrying food, A

f

is in charge, and it causes the robot to wander, and then head for food when

visible. A

n

is constantly suggesting that the robot return to the nest, but its

W-values are too weak. Then, as soon as i = 1, A

f

's W-values drop below zero,

and A

n

�nds itself in charge. As soon as it succeeds in taking the robot back to

the nest, i = 0 and A

f

immediately takes over again. In this way the two agents

combine to forage food, even though both are pursuing their own agendas.

In fact, when i = 1 (carrying food), A

f

is a long way o� from getting a

reward, since it has to lose the food at the nest �rst. And it cannot learn how

to do this since (n) is not in its statespace. A

f

ends up in a state of dependence

on A

n

, which actually knows better than A

f

the action that is best for it.

4.4 Discussion

Given some collection of agents, there are a large number of ways in which they

can divide up the statespace between them. This de�nes a large space of possible

agent-combinations. As conditions change, we can move continuously through

12

this space by varying the numerical rewards (their size, and the di�erences

between them), so varying each agent's possession of state-space in a continuous

manner. This is an alternative to the programmed approach where we have to

specify and hand-code perhaps quite di�erent logic for each situation.

5 Summary and conclusion

We have shown that for any given collection of Q-learners, there is what can

be described as a `natural' action-selection scheme. We avoid the problem of

de�ning the ow of control by having it follow naturally once the collection of

agents is speci�ed.

W-learning resolves competition without any W ! 1, and in fact with

normally most W �W

max

.

Finally, W-learning is fair resolution of competition - the most likely winner

of a state is the agent that is most likely to su�er the highest deviation if it does

not win.

References

[Blumberg, 1994] Blumberg, Bruce (1994), Action-Selection in Hamsterdam: Lessons

from Ethology, in Dave Cli� et al., eds., Proceedings of the Third International

Conference on Simulation of Adaptive Behavior (SAB-94).

[Brooks, 1986] Brooks, Rodney A. (1986), A robust layered control system for a mobile

robot, IEEE Journal of Robotics and Automation vol.RA-2, no.1, Mar 1986.

[Brooks, 1991] Brooks, Rodney A. (1991), Intelligence without Representation, Arti-

�cial Intelligence 47:139-160.

[Dawkins, 1986] Dawkins, Richard (1986), The Blind Watchmaker, Penguin Books.

[Goldberg, 1989] Goldberg, David E. (1989), Genetic Algorithms: in search, optimiza-

tion, and machine learning, Addison-Wesley.

[Holland, 1975] Holland, John H. (1975), Adaptation in Natural and Arti�cial Sys-

tems, Ann Arbor, Univ. Michigan Press.

[Humphrys, 1995] Humphrys, Mark (1995), W-learning: Competition among sel�sh

Q-learners, technical report no.362, University of Cambridge, Computer Labora-

tory.

[Langton, 1989] Langton, Christopher G. (1989), Arti�cial Life, in Christopher

G.Langton, ed., Arti�cial Life.

[Minsky, 1986] Minsky, Marvin (1986), The Society of Mind, Simon and Schuster, New

York.

[Sutton, 1988] Sutton, Richard S. (1988), Learning to Predict by the Methods of Tem-

poral Di�erences, Machine Learning 3:9-44.

[Tyrrell, 1993] Tyrrell, Toby (1993), Computational Mechanisms for Action Selection,

PhD thesis, University of Edinburgh, Centre for Cognitive Science.

[Watkins, 1989] Watkins, Christopher J.C.H. (1989), Learning from delayed rewards,

PhD thesis, University of Cambridge, Psychology Department.

[Watkins and Dayan, 1992] Watkins, Christopher J.C.H. and Dayan, Peter (1992),

Technical Note: Q-Learning, Machine Learning 8:279-292.

13

