
Action selection in a hypothetical house robot:

Using those RL numbers

Mark Humphrys

University of Cambridge, Computer Laboratory

�

http://www.cl.cam.ac.uk/users/mh10006

Abstract

Reinforcement Learning (RL) methods, in contrast to

many forms of machine learning, build up value func-

tions for actions. That is, an agent not only knows

`what' it wants to do, it also knows `how much' it wants

to do it. Traditionally, the latter are used to produce

the former and are then ignored, since the agent is as-

sumed to act alone. But the latter numbers contain use-

ful information - they tell us how much the agent will

su�er if its action is not executed (perhaps not much).

They tell us which actions the agent can compromise

on and which it cannot. It is clear that many inter-

esting systems possess multiple parallel and conict-

ing goals, all demanding attention, and none of which

can be fully satis�ed except at the expense of others.

Animals are the prime example of such systems. In

[Humphrys, 1995], I introduced the W-learning algo-

rithm, showing one method of resolving competition

among behaviors automatically by reference to their

RL values. The scheme has the unusual feature that

behaviors are at all times in sel�sh pursuit of their own

goals and have no explicit concept of cooperation, de-

spite residing in the same body. In this paper, I apply

W-learning to the world of a hypothetical house robot,

which doubles as family toy, mobile security camera,

mobile smoke alarm and occasional vacuum cleaner. I

show how a W-learning community of behaviors inside

the robot will support a robust behavior pattern, capa-

ble of opportunistic behavior, avoiding dithering, and

allowing for the concept of default behavior and expres-

sion of low-priority goals.

Keywords: reactive systems, action selection, rein-

�

postal address: University of Cambridge, Computer

Laboratory, New Museums Site, Pembroke St., Cambridge

CB2 3QG, England. tel: +44 1223 335443. fax: +44 1223

334678 or 334679. email: Mark.Humphrys@cl.cam.ac.uk

forcement learning, multi-behavior learning

1 Action selection

It is clear that many interesting systems pos-

sess multiple parallel and conicting goals, among

which attention must endlessly switch. In the study

of animal behavior, ethologists call this the prob-

lem of action selection - the choosing by the animal

of the appropriate goal to pursue or desire to sat-

isfy at a given moment in time, given the state of

the external world.

Ethologists have proposed various models of ac-

tion selection in the animals they observe (see

[Tyrrell, 1993] for a survey). When engineers try

to build systems according to similar models, they

normally �nd themselves in the position of hav-

ing to adjudicate the trade-o�s between the goals

(see [Tyrrell, 1993, Ch.9], [Aylett, 1995]). To try

to escape from this di�cult design problem, I in-

troduced in [Humphrys, 1995] the following model

in which the behaviors would decide among them-

selves in a logical manner.

1.1 Competition among sel�sh

agents

The basic model of competing behaviors is shown

in Figure 1. There are multiple behaviors sharing

the same body. I call these agents

1

since each is

1

I use the word agent to emphasise that these are

autonomous actors, not mere procedure calls, not struc-

tured in any hierarchy and not even necessarily coop-

erative. This is similar to the use of the word in

[Minsky, 1986], and this model can be seen as a society of

mind in which every agent can deal with the external world.

For somewhat-autonomous, somewhat-competing modules

I
O

.

Figure 1: Competition among sel�sh peer agents

in a horizontal architecture. Each agent suggests

an action, but only one action is executed. Which

agent is obeyed changes dynamically.

connected directly from senses to action and will

drive the body in a pattern of behavior if left alone

in it. Each is frustrated by the presence of other

agents who want to use the body to implement their

plans.

Think of it as a creature with a fully decentralised

mind, a sort of logical development of decentralised

models of control such as the subsumption architec-

ture [Brooks, 1986, Brooks, 1991].

Agents compete for control, having to make a

case that they should be given it. One will win,

having its action executed, then they will compete

again for the next action to be executed, and so

on inde�nitely. The simplest scheme would be for

each agent to suggest its action with a strength (or

Weight) W , expressing how important it is to their

purposes that they be obeyed at this moment, and

have the creature execute the action that comes

with the largest W . To be precise, we have a col-

lection of agents A

1

; : : : ; A

n

inside the one body.

Each discrete time step, the creature observes the

world to be in some state x. Each agent A

i

sug-

gests an action a

i

(x) with weight W

i

(x), and the

creature executes action a

k

(x) where:

W

k

(x) = max

i21;:::;n

W

i

(x)

We call A

k

the leader in the competition for state

x at the moment, or the owner of x at the mo-

ment. The actions a

i

(x) will be whatever actions

the agent has learnt to take to pursue its goals. It

is where the W-values W

i

(x) come from, and how

they change in response to not being obeyed, that

within a single body, [Brooks, 1986] uses layer (though

[Brooks, 1994] also uses process), [Blumberg, 1994] uses ac-

tivity and [Sahota, 1994] uses behavior.

is the interesting bit. Schemes using such `impor-

tance' values are common in multi-behavior models

(e.g. see the `utility' functions in [Aylett, 1995]),

and are normally hand-designed. To get them gen-

erated for free, we look to reinforcement learning.

2 Reinforcement Learning

2.1 Q-learning

Watkins [Watkins, 1989] introduces the method of

reinforcement learning called Q-learning. Each dis-

crete time step, the agent observes state x, takes

action a, observes new state y, and receives im-

mediate reward r. P

xa

(y) is the probability that

doing a in x will lead to state y and P

xa

(r) is the

probability that doing a in x will generate reward

r.

The agent is interested not just in immediate re-

wards, but in the total discounted reward. In this

measure, rewards received n steps into the future

are worth less than rewards received now, by a fac-

tor of

n

where 0 � < 1:

R = r

t

+ r

t+1

+

2

r

t+2

+ � � �

The strategy that the Q-learning agent adopts is

to build up Quality-values (Q-values) for each pair

(x; a). In 1-step Q-learning, after each experience,

we update:

Q(x; a) := (1� �)Q(x; a) + �(r + max

b2A

Q(y; b))

Given some restrictions (see details in

[Watkins and Dayan, 1992]), Q-learning con-

verges to a unique set of values Q

�

(x; a) which

de�ne a stationary deterministic optimal policy,

namely to always takes the action with the highest

Q

�

-value:

V

�

(x) = Q

�

(x; a

�

(x))

= max

b2A

Q

�

(x; b)

A RL agent learns not only `what' it wants to do,

but also `how much' it wants to do it. Tradition-

ally, the latter are used to produce the former and

are then ignored, since the agent is assumed to act

alone. But in multi-behavior systems, these latter

numbers are just what we are looking for.

2.2 Competition among sel�sh Q-

learners

In the model in Figure 1, I make each agent into a

Q-learning agent, with its own set of Q-values and

more importantly, with its own reward function. To

formalise, each agent A

i

receives rewards r

i

from

a personal distribution P

i

xa

(r). The distribution

P

xa

(y) is a property of the world - it is common

across all agents. Each agent A

i

maintains personal

Q-values Q

i

(x; a) and W-values W

i

(x).

The basic criterion for generating W-values is

that we don't want all W ! W

max

. We want the

agents to not �ght equally for all states, but rather

discriminate depending on x. We need something

akin to an economy, where agents have �nite spend-

ing power and must choose what to spend it on.

One way of achieving this is to have W express

the di�erence between predicted reward P (what is

predicted if we are listened to) and actual reward

A (what actually happened).

3 W-learning

Consider Q-learning as the process:

P := (1� �

Q

)P + �

Q

(A)

Then W-learning is:

W := (1� �

W

)W + �

W

(P �A)

For updating the Q-values, only one agent (the

leader A

k

) suggested the executed action a

k

. How-

ever, all agents can learn from the transition (under

their own di�erent reward functions). We update

for all i:

Q

i

(x; a

k

) := (1� �

Q

)Q

i

(x; a

k

)

+�

Q

(r

i

+ max

b2A

Q

i

(y; b))

For the W-values, we only update the agents that

were not obeyed. We update for i 6= k:

W

i

(x) := (1� �

W

)W

i

(x)

+�

W

(Q

i

(x; a

i

)� (r

i

+ max

b2A

Q

i

(y; b)))

Alternatively [Sutton, 1988], consider Q-learning

as the process:

P := P + �

Q

(A�P)

Then W-learning is:

W :=W + �

W

((P �A)�W)

3.1 Convergence of W-learning

As Q is learnt, the update for A

i

, i 6= k, is approx-

imated by:

W

i

(x) := (1��

W

)W

i

(x)+�

W

(V

�

i

(x)�(r

i

+V

�

i

(y)))

where r

i

and y are caused by the leader A

k

. We

can write this as:

W

i

(x) := (1� �

W

)W

i

(x) + �

W

d

ki

(x)

where the random variable d

ki

(x) is the `devi-

ation' (di�erence between predicted P and actual

A) that A

k

causes for A

i

in state x if both are con-

verged to their respective Q

�

. Note that:

E(d

ki

(x)) = V

�

i

(x)� (E(r

i

) + E(V

�

i

(y)))

= V

�

i

(x)� (

P

r

rP

i

xa

(r)

+

P

y

V

�

i

(y)P

xa

(y))

where a = a

�

k

(x). We expect:

E(d

kk

(x)) = 0

and we expect for i 6= k:

E(d

ki

(x)) � 0

If A

k

leads forever:

W

i

(x) ! E(d

ki

(x))

� 0

Of course, it may be interrupted, as some new

agent takes the lead. If A

i

itself takes the lead,

then W-learning stops for it until (if ever) it loses

it. If another agent A

l

takes the lead, then A

i

will

suddenly be taking samples from the distribution

d

li

(x). If we update forever from this point, then

W

i

(x) eventually converges to the expected value

of the new distribution:

W

i

(x)! E(d

li

(x))

Essentially, the reason why W-learning converges

is that for the leader to keep on changing, W must

keep on rising. And while there may be statis-

tical variations in any �nite sample, in the long

run the expected values must emerge. Competi-

tion will be resolved when some agent A

k

, as a re-

sult of the deviations it su�ers in the earlier stages

of W-learning, accumulates a high enough W-value

W

k

(x) such that:

8i; i 6= k; W

i

(x)! E(d

ki

(x)) < W

k

(x)

A

k

wins because it has su�ered a greater devia-

tion in the past than any expected deviation it is

now causing for the other agents. For more detailed

analysis see [Humphrys, 1995].

3.2 MPEG Movie demos

The concept of W-learning has been tested in a

simple `antworld' where a creature must collect

food while avoiding moving predators. A series

of MPEG Movies of the results can be viewed at:

http://www.cl.cam.ac.uk/users/mh10006/w.html

4 The House Robot problem

This leads to the question of the commercial use-

fulness of systems with multiple parallel, partially-

satis�ed goals. Inspired by a familiar such system,

the common household dog, I am looking at the ac-

tion selection issues that might be faced by a hypo-

thetical, multi-purpose `house robot'. The question

is: What could an autonomous mobile robot do in

the home?

Consider that the main fears of any household are

(a) �re, (b) burglary and (c) intruders/attackers.

These all tend to happen because there is only one

or no people at home or the family is asleep. At

least, none of these things would happen if there

were enough alert adults wandering round all the

time.

So in the absence of enough alert adults, how

about an alert child's toy? Even if about all a small

mobile robot could do was cover ground and look

at things, it might still be useful. In this hypo-

thetical scenario, the robot would be a wandering

security camera, transmitting pictures of what it

saw to some remote mainframe. It could also dou-

ble as a mobile wandering smoke alarm, and de-

fault perhaps to a vacuum cleaner when nothing

was happening. Ignoring the practicalities of this

kind of scenario, I use it as inspiration to build an

arti�cial world to test the action selection issues.

In the arti�cial gridworld of Figure 2, the posi-

tions of entrances and internal walls are randomised

on each run. Humans are constantly making ran-

dom crossings from one entrance to another. The

robot should follow strangers, and stay out of the

way of family. It must go up close �rst to identify

the human as family or stranger. Dirt trails after

all humans. The robot picks up dirt and must occa-

sionally return to some base to re-charge and empty

its bag. Fire starts at random and then grows by

a random walk. The robot puts out the �re on a

square by moving onto it.

The robot senses the direction, but not distance,

of things in a small radius around it (the eight main

compass directions, numbered 0-7, also 8 for `here'

and 9 for `not visible'). Fire is the only thing that

it can detect through walls - otherwise if something

is blocked by a wall it is not visible. The robot's

actions are simply move in direction 0-7 or stay still.

The number of possible states x is 1.2 million. We

populate the robot with the following collection of

agents, each driven by a di�erent reward function.

Note A

c

should head for the centre of an open area

while A

w

should engage in wall-following. Rewards

are in the range 0 < r � 1.

A

d

if (picked up dirt) return r

d

else return 0

A

p

if (arrived at plug) return r

p

else return 0

A

c

if (lost sight of wall) return r

c

else return 0

A

w

if (wall same dir as last time) return r

w

else return 0

A

u

if (made ID) return r

u

else return 0

A

s

if (ID=stranger and visible) return r

s

else return 0

A

m

if (ID=family and here) return 0 else return r

m

A

f

if (put out �re) return r

f

else return 0

This de�nes a vast range of robot behaviors, de-

pending on what these rewards are. For example, if

r

w

= 1 and all other rewards are 0.001, then A

w

will

beat all other agents in competition since its abso-

lute (P �A) di�erences will be so large. In almost

all states x it will build up a higher W-valueW

w

(x)

than any of the competitorW

i

(x)'s. The robot will

be completely dominated by A

w

, and will spend all

its time wall-following - in fact, spend all its time

stationary, with a wall in sight, since that is A

w

's

preferred position. By varying the relative size of

the rewards, we can vary the relative inuence of

each agent in the collection.

100 (0,2,9,9,7,0,4) [Ap] (3) -> (0,1,9,9,3,0,5)

Plug

Win

Door

Door

Figure 2: The House Robot's world. Here, the building is on �re, dirt is scattered everywhere, and an

unidenti�ed human has just come in the top door.

4.1 De�ning good solutions

We obviously need to de�ne somehow what type of

collection we are looking for i.e. how one robot is

better than another. Our judgement is made by

totting up points during a run:

points := 0

every time step:

once-off type scores:

if (got in way of family) subtract 1 point

if (picked up dirt) add 1 point

if (arrived at plug) add 1 point

if (put out fire) add 5 points

continuous-type scores:

if (stranger exists unseen) subtract 0.1 points

if (fire exists) subtract 0.1 points

if (fire is large) subtract 0.5 points

We could use this global reward function to just

learn the full behavior with one agent, but we would

be dealing with a statespace of size 1.2 million. In-

stead, using the decentralised approach, each agent

need only sense what is relevant to its reward func-

tion. Here, none of the eight agents deals with a

statespace larger than 30. We use the global score

as the �tness function for testing di�erent combi-

nations of rewards. Did you spot the problem with

this �tness function? Genetic algorithm search did.

It produced the solution:

r

d

= 0:93

r

p

= 0:34

r

c

= 0:47

r

w

= 0:08

r

u

= 0:47

r

s

= 0:74

r

m

= 0:34

r

f

= 1

which picks up a remarkable average of 29.590

points every 100 steps. It does this by jump-

ing in and out of the plug non-stop, picking up 1

point every alternate go. A

p

dominates its behav-

ior (though you might not expect this just looking

at the rewards). It doesn't get the maximum of 50

because if it completely ignores �re, any �re that

starts will rapidly become large and then subtract

1.2 points every 2 steps, overwhelming the points

scored at the plug. This illustrates that even spec-

ifying what we are looking for is di�cult. We re-

vise the global score to make hitting the plug a

continuous-type score:

...

if (arrived at plug) add 0.1 points

...

4.2 Analysis of evolved solution

Evolving with this new �tness function produced

the best solution:

r

d

= 0:93

r

p

= 0:01

r

c

= 0:41

r

w

= 0:01

r

u

= 0:54

r

s

= 0:60

r

m

= 0:67

r

f

= 0:67

which averages 13.446 per 100 steps. It seems

to do this by interleaving all its goals. Writing a

strict hierarchical program to solve the problem,

with attention devoted to humans only when there

was no �re, and attention devoted to dirt only when

there was no �re or humans, resulted in a score of

8.612 under this �tness function. One might argue

that the �tness function is responsible - but if we

knew in advance that what we wanted was a strict

hierarchy, there would be no problem to solve.

It is clear that in many situations we do not

want a strict hierarchy but rather want to see op-

portunistic behavior, where di�erent goals are par-

tially satis�ed on the way to solving other goals.

Dithering [Minsky, 1986, Sahota, 1994] in general is

avoided in W-learning collections since agents can

tell the di�erence between situations when they are

likely to get an immediate payo� and situations

when they could only begin some sequence of ac-

tions which will lead to a payo� later. The agents

will present di�erent W-values accordingly.

Looking closer at our evolved solution, here are

the strongest few W-values:

Ws(7,2) 0.499

Ws(3,2) 0.413

Ws(0,2) 0.337

Ws(0,0) 0.257

Ws(2,2) 0.243

Wu(7,0) 0.240

Wd(4,0) 0.177

Wd(5,0) 0.176

Wd(1,0) 0.163

Wd(2,0) 0.131

Wd(0,0) 0.126

Ws(5,0) 0.119

Ws(6,2) 0.088

Wd(7,0) 0.085

Wd(6,0) 0.084

Wf(2,0) 0.078

Wf(4,0) 0.076

Ws(3,0) 0.070

Wf(6,0) 0.068

Wd(3,0) 0.068

Wf(0,0) 0.062

Ws(1,0) 0.061

Wf(1,0) 0.061

Ws(2,0) 0.048

Wf(5,0) 0.042

Wf(3,0) 0.042

Ws(4,0) 0.040

Wf(8,0) 0.037

Wf(7,0) 0.031

Ws(9,2) 0.030

Wd(8,0) 0.028

Wf(7,1) 0.017

Wc(3) 0.017

...

We can see that there is a complex intermingling

of W

s

, W

d

and W

f

. The states (i; 2) (as seen by

A

s

) are those where a human has been identi�ed as

a stranger - these are the crucial states for A

s

since

it can pick up a continuous reward if it keeps the

human in sight. The states (i; 0) (as seen by A

f

)

are those where �re is visible without a wall in the

way. These build up higher W-values (A

f

is more

con�dent about what to do) than when there is a

wall in the way, where A

f

will need some kind of

stochastic policy. Here are the probabilities of each

action being suggested by A

f

when the �re is in

direction 4, behind a wall. The higher probability

actions are highlighted.

(0) (1) (2) (3) (4)

Qf((4,1),a) 0.028 0.029 0.036 0.033 0.034

p(a) 0.078 0.084 [0.154] [0.121] [0.127]

(5) (6) (7) (8)

Qf((4,1),a) 0.035 0.036 0.030 0.025

p(a) [0.135] [0.147] 0.091 0.063

We can see that A

f

builds up a broad front in

approach to the wall. Moving at right angles to

the direction of the �re (directions 2 and 6) is good

because it is more likely to see the end of the wall.

In any case, when the route to the �re is blocked

by a wall, A

f

is amenable to suggestions by other

agents, in particular by the combination of A

c

and

A

d

, who drive the robot in a strong wandering be-

havior otherwise.

A

p

with its tiny reward is irrelevant - its job tends

to be done for it anyway by A

c

bringing the robot

towards the centre. A

u

has a not insigni�cant re-

ward, but �nds its job is done for it by A

s

, which

also wants to investigate unidenti�ed humans (in

case they turn out to be strangers). So A

u

lets A

s

do all the work for it, and as long as A

s

is being

obeyed by the creature, A

u

is happy:

Wu(0,0) -0.182

Wu(1,0) -0.193

Wu(2,0) -0.179

Wu(3,0) -0.152

Wu(4,0) -0.123

Wu(5,0) -0.112

Wu(6,0) -0.130

Wu(7,0) 0.240

The sole exception is state (7; 0), which for some

reason fell to A

u

to be responsible for, while A

s

took its turn at dropping out of the competition:

Ws(0,0) 0.257

Ws(1,0) 0.061

Ws(2,0) 0.048

Ws(3,0) 0.070

Ws(4,0) 0.040

Ws(5,0) 0.119

Ws(6,0) 0.013

Ws(7,0) -0.108

5 Summary and conclusion

To conclude, W-learning is a method of learning

action selection rather than designing it, based on

RL, a method of learning behavior rather than de-

signing it. It resolves competition in a manner

which allows the expression of low-priority goals,

avoids dithering, and allows for opportunism and a

concept of default behavior, all qualities that one

would try to build into a hand-designed action se-

lection mechanism.

W-learning resolves competition without resort-

ing to devices such as killing o� agents that are

disobeyed for time t, without any W !1, and in

fact with normally most W �W

max

.

Finally, W-learning is fair resolution of competi-

tion - the most likely winner of a state is the agent

that is most likely to su�er the highest deviation if

it does not win.

References

[Aylett, 1995] Aylett, Ruth (1995), Multi-Agent Plan-

ning: Modelling Execution Agents, in Sam Steel, ed.,

Papers of the 14th Workshop of the UK Planning and

Scheduling Special Interest Group.

[Blumberg, 1994] Blumberg, Bruce (1994), Action-

Selection in Hamsterdam: Lessons from Ethology,

in Dave Cli� et al., eds., Proceedings of the Third

International Conference on Simulation of Adaptive

Behavior (SAB-94).

[Brooks, 1986] Brooks, Rodney A. (1986), A robust

layered control system for a mobile robot, IEEE

Journal of Robotics and Automation vol.RA-2, no.1,

Mar 1986.

[Brooks, 1991] Brooks, Rodney A. (1991), Intelli-

gence without Representation, Arti�cial Intelligence

47:139-160.

[Brooks, 1994] Brooks, Rodney A. (1994), Coherent

Behavior from Many Adaptive Processes, in Dave

Cli� et al., eds., Proceedings of the Third Interna-

tional Conference on Simulation of Adaptive Behav-

ior (SAB-94).

[Humphrys, 1995] Humphrys, Mark (1995), W-

learning: Competition among sel�sh Q-learners,

technical report no.362, University of Cambridge,

Computer Laboratory. Online at: http://

www.cl.cam.ac.uk/users/mh10006/publications.html

[Minsky, 1986] Minsky, Marvin (1986), The Society of

Mind, Simon and Schuster, New York.

[Sahota, 1994] Sahota, Michael K. (1994), Action

Selection for Robots in Dynamic Environments

through Inter-behaviour Bidding, in Dave Cli� et al.,

eds., Proceedings of the Third International Confer-

ence on Simulation of Adaptive Behavior (SAB-94).

[Sutton, 1988] Sutton, Richard S. (1988), Learning to

Predict by the Methods of Temporal Di�erences,Ma-

chine Learning 3:9-44.

[Tyrrell, 1993] Tyrrell, Toby (1993), Computational

Mechanisms for Action Selection, PhD thesis, Uni-

versity of Edinburgh, Centre for Cognitive Science.

[Watkins, 1989] Watkins, Christopher J.C.H. (1989),

Learning from delayed rewards, PhD thesis, Univer-

sity of Cambridge, Psychology Department.

[Watkins and Dayan, 1992] Watkins, Christopher

J.C.H. and Dayan, Peter (1992), Technical Note:

Q-Learning, Machine Learning 8:279-292.

