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Abstract

Action Selection schemes, when translated into

precise algorithms, typically involve considerable

design e�ort and tuning of parameters. Little

work has been done on solving the problem us-

ing learning. This paper compares eight di�erent

methods of solving the action selection problem

using Reinforcement Learning (learning from re-

wards). The methods range from centralised and

cooperative to decentralised and sel�sh. They

are tested in an arti�cial world and their per-

formance, memory requirements and reactiveness

are compared. Finally, the possibility of more ex-

otic, ecosystem-like decentralised models are con-

sidered.

1 Action Selection

By Action Selection we do not mean the low-level prob-

lem of choice of action in pursuit of a single coherent

goal. Rather we mean the higher-level problem of choice

between conicting and heterogenous goals. These goals

are pursued in parallel. They may sometimes combine

to achieve larger-scale goals, but in general they simply

interfere with each other. They may not have any ter-

minating conditions.

Typically, the action selection models proposed in

ethology are not detailed enough to specify an algo-

rithmic implementation (see [Tyrrell, 1993] for a sur-

vey, and for some di�culties in translating the con-

ceptual models into computational ones). The models

that do lend themselves to algorithmic implementation

(e.g. see [Brooks, 1991, Blumberg, 1994, Sahota, 1994,

Aylett, 1995]) then typically require a considerable de-

sign e�ort. In the literature, one sees formulas taking

weighted sums of various quantities in an attempt to es-

timate the utility of actions. There is much hand-coding

and tuning of parameters (e.g. see [Tyrrell, 1993, Ch.9],

[Aylett, 1995]) until the designer is satis�ed that the for-

mulas deliver utility estimates that are fair.

In fact, there may be a way that these utility values

can come for free. Learning methods that automatically

assign values to actions are common in the �eld of Re-

inforcement Learning (RL) [Kaelbling, 1993]. Reinforce-

ment Learning propagates numeric rewards into behav-

ior patterns. The rewards may be external value judge-

ments, or just internally generated numbers. This paper

compares eight di�erent methods of further propagating

these numbers to solve the action selection problem.

The low-level problem of pursuing a single goal can

be solved by straightforward RL, which assumes such a

single goal. For the high-level problem of choice between

conicting goals we try various methods exploiting the

low-level RL numbers.

1.1 Multi-module Reinforcement Learning

In general, Reinforcement Learning work has concen-

trated on problems with a single goal. For com-

plex problems, that need to be broken into subprob-

lems, most of the work either designs the decomposition

by hand [Moore, 1990], or deals with problems where

the sub-tasks have termination conditions and combine

sequentially to solve the main problem [Singh, 1992,

Tham and Prager, 1994].

The action selection problem essentially concerns sub-

tasks acting in parallel, and interrupting each other

rather than running to completion. Typically, each sub-

task can only ever be partially satis�ed [Maes, 1989]. Lin

has devised a form of multi-module RL suitable for such

problems [Lin, 1992], and this will be the second method

tested below.

2 The House Robot problem

We will demonstrate six of the methods in use in the

hypothetical world of a `house robot' (the �nal two are

merely described). The house robot is given a range of

multiple parallel and conicting goals and must partially

satisfy them all as best as it can. It doubles as a mo-

bile security camera, mobile smoke alarm and occasional

vacuum cleaner.

The arti�cial gridworld of Figure 1 was not con-

structed to be a simulation of a robot environment but
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Figure 1: The House Robot's world. Here, the building is on �re, dirt is scattered everywhere, and an unidenti�ed

human has just come in the top door.

just to be a dynamic world in which to explore mul-

tiple conicting goals. The positions of entrances and

internal walls are randomised on each run. Humans are

constantly making random crossings from one entrance

to another. The robot or animat should follow strangers,

and stay out of the way of family. It must go up close

�rst to identify the human as family or stranger. Dirt

trails after all humans. The animat picks up dirt and

must occasionally return to some base to re-charge and

empty its bag. Fire starts at random and then grows

by a random walk. The animat puts out the �re on a

square by moving onto it. Each time step, the animat

senses state x = (d; i; p; w; h; c; f; w

f

), where:

� d is the direction (but not distance) of the nearest

visible dirt, and takes values 0-7 (the primary and

secondary compass directions), 8 (when dirt is on the

same square) and 9 (no dirt visible within a small

radius).

� i is whether the vacuum bag is full and needs empty-

ing, and takes values 0 and 1.

� p (0-9) is the direction of the plug.

� w (0-9) is the direction of the nearest visible wall.

� h (0-9) is the direction of the nearest visible human.

� c is the classi�cation of the human, taking values 0

(no current classi�cation), 1 (known member of fam-

ily) and 2 (stranger).

� f (0-9) is the direction of the nearest visible smoke.

Smoke is the only thing that it can detect through

walls - otherwise if something is blocked by a wall it

is not visible.

� w

f

is whether the smoke is being detected through a

wall, and takes values 0 and 1.

The animat takes actions a, which take values 0-7

(move in that direction) and 8 (stay still).

Given this sensory information, the animat needs to

develop a purely reactive strategy to put out �re, clean

up dirt, watch strangers, and regularly return to base to

re-charge. When we specify precisely (see next section)

what we want, we �nd that the optimum is not any strict

hierarchy of goals. Rather some interleaving of goals

is necessary, with di�erent goals partially satis�ed on

the way to solving other goals. Such goal-interleaving

programs are di�cult to write and make good candidates

for learning.

3 Q-learning

The �rst method we apply is a single monolithic agent

learning from rewards. Watkins [Watkins, 1989] intro-

duced the method of reinforcement learning called Q-

learning. Each discrete time step, the agent observes

state x, takes action a, observes new state y, and re-

ceives immediate reward r. The agent is interested not

just in immediate rewards, but in the total discounted
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reward. In this measure, rewards received n steps into

the future are worth less than rewards received now, by

a factor of 

n

where 0 �  < 1:

R = r

t

+ r

t+1

+ 

2

r

t+2

+ � � �

The strategy that the Q-learning agent adopts is to

build up Quality-values (Q-values) for each pair (x; a).

In 1-step Q-learning, after each experience, we update:

Q(x; a) �! (r + max

b2A

Q(y; b))

whereQ(x; a) �! dmeans that we adjust the estimate

Q(x; a) in the direction of d. For example, if we store

each Q(x; a) explicitly, we may update: Q(x; a) := (1 �

�)Q(x; a) + �d, where � is the learning rate. Or if the

function is being approximated by a neural network, we

backpropagate the error Q(x; a)� d.

All Q-values start randomised. Given some restric-

tions, [Watkins and Dayan, 1992] proved that for lookup

tables Q-learning converges to a unique set of values

Q

�

(x; a) which de�ne a stationary deterministic optimal

policy, namely to always take the action with the highest

Q

�

-value.

3.1 A global reward function

Reinforcement learning is attractive because it prop-

agates rewards into behavior, and presumably reward

functions (value judgements) are easier to design than

behavior itself. Even so, designing the global reward

function here is not easy (see [Humphrys, 1996] for an

example of accidentally designing one in which the opti-

mum solution was to jump in and out of the plug non-

stop). Later we will ask if we can avoid having to design

this explicitly.

reward for single step from x to y

points := 0

once-off type scores:

if (got in way of family) subtract 1 point

if (picked up dirt) add 1 point

if (put out fire) add 5 points

continuous-type scores:

if (arrived at plug) add 0.1 points

if (stranger exists unseen) subtract 0.1 points

if (fire exists) subtract 0.1 points

if (fire is large) subtract 0.5 points

return points

3.2 Neural network implementation

The number of possible states x is 1.2 million, and with

9 possible actions we have a state-action space of size

10.8 million. To hold each Q(x; a) explicitly as a oating

point number, assuming 4 byte oats, would therefore

require 40 M of memory, which on my machine anyway

was impractical. So instead of using lookup tables, we

need to use some sort of generalization - here, multi-layer

neural networks.

Following [Lin, 1992], because we have a small �nite

number of actions we can reduce interference by break-

ing the state-action space up into one network per action.

We have 9 separate nets acting as function approxima-

tors. Each takes a vector input x and producing a oat-

ing point output Q

a

(x)

Furthermore, as in [Rummery and Niranjan, 1994], we

note here that each element of the input vector x takes

only a small number of discrete values. So instead say

of one input unit for (d) taking values 0-9, we can have

10 input units taking values 0 or 1 (a single unit will be

set to 1, all the others set to 0). This makes it much

easier for the network to identify and separate the in-

puts. Employing this strategy, we represent all possible

inputs x in 57 input units which are all binary 0 or 1.

Also like [Rummery and Niranjan, 1994], we found that

a small number of hidden units (10 here) gave the best

performance.

As [Tesauro, 1992] notes, learning here is not like or-

dinary supervised learning where we learn from (In-

put,Output) exemplars. Here we're not presenting

(x;Q

�

(x)) exemplars to the network but instead we are

learning from estimates of Q

�

. We need to repeat the

updates as the estimate improves. Our strategy roughly

follows [Lin, 1992]. We do 100 trials. In each trial we

interact with the world 1400 times, remember our expe-

riences, and then replay the experiences 30 times, each

time factoring in more accurate Q estimates. Like Lin,

we use backward replay as more e�ective (update Q(y)

before updating the Q(x) that led to it). Throughout

the experiments in this paper, we use  = 0:6, and all

lookup tables and neural networks (and hence Q-value

estimates) start randomised.

Adjusting the amount of replay, and the architec-

ture of the networks, the most successful monolithic Q-

learner, tested over 20000 steps (involving 30 di�erent

randomised houses) scored an average of 6.285 points

per 100 steps. This is not an optimal policy - writing

a strict hierarchical program to solve the problem, with

attention devoted to humans only when there was no

�re, and attention devoted to dirt only when there was

no �re or humans, could achieve a score of 8.612. Q-

learning did not �nd an optimal policy because we are

not using lookup tables, and do not have time anyway

to experience each full state.

Clearly, it is di�cult to learn such a complex single

mapping. We will now look at ways in which the learning

problem may be broken up.
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Figure 2: Competition among peer agents in a horizontal

architecture. Each agent suggests an action, but only

one action is executed. Which agent is obeyed changes

dynamically.

4 Hierarchical Q-learning

[Lin, 1993] suggests breaking up a complex problem into

sub-problems, having a collection of Q-learning agents

1

A

1

; : : : ; A

n

learn the sub-problems, and then a single

controller Q-learning agent which learns Q(x; i), where i

is which agent to choose in state x. This is clearly an eas-

ier function to learn than Q(x; a), since the sub-agents

have already learnt sensible actions. When the animat

observes state x, each agent A

i

suggests an action a

i

.

The switch chooses a winner k and executes a

k

.

Lin concentrates on problems where subtasks combine

to solve a global task, but one may equally apply the

architecture to problems where the sub-agents simply

compete and interfere with each other, that is, to classic

action selection problems. In this decentralised approach

(Figure 2), each behavior will drive the body on its own

if allowed, but must send its actions to a switch which

will either obey or refuse it. In hierarchical Q-learning,

the switch is complex and what is sent is simple (a con-

stant action a

i

). Later, we will make the switch simple,

and what is sent more complex.

We set the following 5 agents to build up personal

Q

i

(x; a) values, where the x they sense ranges over a

subspace small enough to use lookup tables, and they

learn by reference to personal reward functions r

i

. The

switch then learns Q(x; i) from the global reward func-

tion. The switch still sees the full state x, and needs to

be implemented as 5 neural networks.

A

d

senses: (d,i)

reward: if (picked up dirt) 1 else 0

A

p

senses: (p)

reward: if (arrived at plug) 1 else 0

A

s

senses: (h,c)

reward: if (ID=stranger and visible) 1 else 0

A

m

senses: (h,c)

reward: if (ID=family and here) 0 else 1

A

f

senses: (f,w

f

)

reward: if (put out �re) 1 else 0

1

I still use the word agent, even though we now have multiple

agents inside the same body. This is similar to the use of the word

in [Minsky, 1986].

Here the agents share the same suite of actions a = 0-

8, but in general we may be interested in breaking up the

action space also. We try to keep the number of agents

low, since a large number of agents will require a large

(x; i) statespace. Note that having all rewards set to 1

doesn't reduce our options - if we replace 1 above by 0.5,

or any number > 0, the agent still learns the same pat-

tern of behavior. It still sends the same preferred action

a

i

to the switch. This does not hold true with a 3-reward

(or more) reward function, where relative di�erences be-

tween rewards matters.

With the same replay strategy as before, and the same

number of test runs, the hierarchical Q-learning system

scored 13.641 points per 100 steps, a considerable im-

provement on the single Q-learner.

5 W-learning (Minimize the Worst Un-

happiness)

Looking at exactly whatQ(x; i) are learnt in the previous

method, the switch learns things like - if dirt is visible

A

d

wins because it expects to make a good contribution

to the global reward - otherwise if the plug is visible A

p

wins because it expects to make a (smaller) contribution.

But the agents could have told us this themselves, with

reference only to their personal rewards. In other words,

the agents could have organised themselves like this in

the absence of a global reward.

W-learning [Humphrys, 1995] is an attempt to de�ne a

sensible way for the agents to organise themselves in the

absence of a global reward. The agents learn by compro-

mising, and the agent that wins is the agent that would

su�er the most if it did not win. Given a state x, the

agents suggest their actions with strengths or Weights

W

i

(x). The switch in Figure 2 becomes a simple gate

letting through the highest one. When the animat ob-

serves state x, the switch �nds the winner k such that:

W

k

(x) = max

i21;:::;n

W

i

(x)

and executes a

k

. We call A

k

the leader in the compe-

tition for state x at the moment, or the owner of x at

the moment. The agents then modify their W

i

(x) values

based on whether they were obeyed (and what happened

if they weren't), so that next time round there may be a

di�erent winner. Schemes using such `importance' values

are common in multi-behavior models (e.g. see the `util-

ity' functions in [Aylett, 1995]), but are normally hand-

designed.

W-learning builds up the di�erence between predicted

reward P (what is predicted if the agent is obeyed) and

actual reward A (what actually happened). Consider

Q-learning as the process:

P �! A
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where we are learning P , and A is caused by the exe-

cution of our action. Then W-learning is:

W �! (P �A)

where P is already learnt, and A is caused by the ex-

ecution of another agent's action. (P �A) is the `error'

or loss that the other agent is causing for this one by

being obeyed in its place. When we see a di�erence term

between predicted and actual, we expect that this `error

term' will go to zero, but here it goes to a positive num-

ber. To be precise, when agent A

k

is the winner and has

its action executed, all agents except A

k

update:

W

i

(x) �! (Q

i

(x; a

i

)� (r

i

+ max

b2A

Q

i

(y; b)))

where the reward r

i

and next state y were caused by

A

k

rather than by the agent itself. W-learning does not

assume that A

k

's actions are meaningful to this agent -

it does not assume we can look at Q

i

(x; a

k

). But we can

always observe what happened in terms of r

i

and y. The

error distribution we sample from will abruptly change if

there is a change of leader in state x, but competition will

eventually be resolved for this state when some agent, as

a result of losses it has su�ered in the past, builds up

an unassailable W-value for x (see [Humphrys, 1995] for

details).

Note that if we update the winner's W-value as well,

we would be updating W

k

(x) �! 0, since if you are

obeyed, your expected error is zero. So as soon as an

agent gets into the lead, its W-value starts dropping until

it loses the lead again. Competition is never resolved.

This is why the leader does nothing - it's up to the others

to catch up with it. If they can't, we have a resolved

competition. Not updating W

k

(x) though, means that

if it gets arbitrarily set to an unfairly high value, it will

never be challenged. So we initialise all W

i

(x) to zero or

random negative values.

5.1 Making agents weaker or stronger

There being no global (x; i) statespace to worry about,

we can expand the number of agents. To the previous

�ve, we add three more agents. A

c

should head for

the centre of an open area while A

w

should engage in

wall-following. We can add more agents than probably

needed - if they're not useful they just won't win any

W-competitions and won't be expressed. Rewards are in

the range 0 < r � 1. Both the Q

i

(x; a) values andW

i

(x)

values refer to x in the little subspaces, for which lookup

tables can be used.

A

d

senses: (d,i)

reward: if (picked up dirt) r

d

else 0

A

p

senses: (p)

reward: if (arrived at plug) r

p

else 0

A

c

senses: (w)

reward: if (lost sight of wall) r

c

else 0

A

w

senses: (w)

reward: if (wall same dir as last time) r

w

else 0

A

u

senses: (h,c)

reward: if (made ID) r

u

else 0

A

s

senses: (h,c)

reward: if (ID=stranger and visible) r

s

else 0

A

m

senses: (h,c)

reward: if (ID=family and here) 0 else r

m

A

f

senses: (f,w

f

)

reward: if (put out �re) r

f

else 0

Unlike in the previous method, here the values of the

rewards r

i

do matter. An agent with rewards 1 and 0 will

end up with higher W-values than an equivalent agent

with rewards 0.1 and 0 and the same logic, since its ab-

solute (P � A) di�erences will be greater. It will win

a greater area of state-space in competitions. We make

agents stronger (more inuential in the collection) by in-

creasing the di�erences between their rewards. Adaptive

collections are likely to involve well-chosen combinations

of weak and strong agents. The best combination found

above was:

r

d

= 0:93

r

p

= 0:01

r

c

= 0:41

r

w

= 0:01

r

u

= 0:54

r

s

= 0:60

r

m

= 0:67

r

f

= 0:67

This was discovered by running a genetic algorithm

search on combinations of r

i

's. Given a particular com-

bination, the agents learn their behaviors by Q-learning,

and then organise their action selection by W-learning,

without reference to a global reward. Obviously, if the

global reward function still de�nes what we are looking

for, we still need to use it - as the �tness function to guide

our search. But it no longer need be available explicitly

to the agents. It need only be used to test them. Hence

the �tness function could be just implicit in the environ-

ment, as in the best Arti�cial Life research [Ray, 1991].

This combination scored 13.446, slightly less than

we got with Hierarchical Q-learning, but achieved with

a reduction in memory requirements from 9.6 million

to 1600. For analysis of how the agents interact to

achieve the task see [Humphrys, 1996]. Note that all GA

searches in these experiments were population size � 60,

initially randomised, evolving for � 30 generations.

6 W=Q (Maximize the Best Happiness)

The �rst response to W-learning is to ask if we need such

an elaborate value of W . Why not simply have actions

promoted with their Q-values. The agent promotes its

action with the same strength no matter what (if any)

its competition:
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W

i

(x) = Q

i

(x; a

i

)

and we just search for adaptive combinations as be-

fore. This works very well, and the following collection

achieved a score of 15.313. Further, the memory require-

ments are even less, since no W-values at all are kept.

r

d

= 0:93

r

p

= 0:41

r

c

= 0:41

r

w

= 0:08

r

u

= 0:80

r

s

= 0:14

r

m

= 0:08

r

f

= 1:00

But we are not �nished with W-learning yet. It seems

on paper that W=Q should not perform so well, since

it maximises the rewards of only one agent, while W-

learning makes some attempt to maximise their collec-

tive rewards (which is roughly what the global reward

is). Consider the following scenario, where there are two

actions (1) and (2). The agents' preferred actions are

highlighted:

a (1) (2)

Q1(x,a) [1.1] 1

Q2(x,a) 0 [0.9]

If we use W=Q, then agent A

1

wins (since 1:1 > 0:9),

action (1) is executed, A

1

gets reward 1.1, and A

2

gets

0. If we use W = (P �A), then A

2

wins (since it would

su�er 0.9 if it didn't), (2) is executed, A

1

gets 1, and

A

2

gets 0.9. If the global reward / evolutionary �tness

is roughly a combination of the agents' rewards, then

W = (P �A) is a better strategy. Note that this is the

familiar ethology problem of opportunism - can A

2

force

A

1

into a small diversion from its plans to pick up along

the way a goal of its own?

So why did W-learning not perform better? The an-

swer seems to be that the house robot environment does

not contain problems of the nature above. It contains

situations where A

2

wants to slightly divert A

1

alright,

but only in situations where A

2

itself doesn't mind being

diverted - the 0 above becomes a 0.8. This is because all

behaviors here are essentially of the form `if some feature

is in some direction, then move in some direction' with

rewards for arriving at the feature or losing sight of it.

So if Q

1

(x; 1) = 1:1 is similar to Q

1

(x; 2) = 1, it is be-

cause actions (1) and (2) are movements in roughly the

same direction, in which case Q

2

(x; 1) and Q

2

(x; 2) will

end up similar.

7 W-learning with full space

W-learning performed similarly to Hierarchical Q-

learning, but with far less memory requirements. But

note that using subspaces for W

i

(x) results in a loss of

accuracy.

Consider the competition between the dirt-seeker A

d

and the smoke-seeker A

f

. For simplicity, let the global

state be x = (d; f). A

d

sees only states (d), and A

f

sees only (f). When the full state is x = (d; 5), A

f

simply sees all these as state (5), that is, smoke is in

direction 5. Sometimes A

d

opposes it, and sometimes,

for no apparent reason, it doesn't. But W

f

(5) averages

all these together into one variable. It is a crude form

of competition, since A

f

must present the same W-value

in many di�erent situations where its competition will

want to do quite di�erent things. The agents might be

better able to exploit their opportunities if they could

tell the real states apart and present di�erent W-values.

If we are to make the x in the W

i

(x) refer to the

full state, then each agent needs a single neural network

to implement the function. Recall that the W-learning

strategy for lookup tables is to start with W random neg-

ative, and have the leadingW

k

(x) unchanged, waiting to

be overtaken. This will not work with neural networks.

First because trying to initialise W to random negative

is pointless since the network's values will make large

jumps up and down in the early stages when its weights

are untuned. Second because even if we do not update

it, W

k

(x) will still change as the other W

k

(y) change.

And if the net doesn't see W

k

(x) �! d for a while, it

will forget it.

We could think of various methods to try to repeat-

edly clamp W

k

(x), but it seems all would need extra

memory to remember what value it should be clamped

to. The simplest approach is probably: Start with W

random. Do one run of 30000 steps with random win-

ners so that everyone experiences what it's like to lose,

and remembers these experiences. Then they all replay

their experiences 10 times to learn from them properly.

We use a similar network architecture as before. The

best combination of agents found, scoring 14.871, was:

r

d

= 0:67

r

p

= 0:01

r

c

= 0:80

r

w

= 0:08

r

u

= 0:14

r

s

= 0:60

r

m

= 0:21

r

f

= 1:00

8 Negotiated W-learning

If other agents' actions are meaningless to it, all an agent

can do is observe what r and y they generate, as W-

learning does. However, if other agents' actions mean

something to the agent, it already has built up an es-

timate of the expected reward in the value Q

i

(x; a

k

).

So rather than learning a W-value from samples, it can

assign it directly if the successful action a

k

is communi-

cated to it. We can do this in the house robot problem,
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since all agents share the same suite of actions (`move'

0-8).

In Negotiated W-learning, the animat observes a state

x, and then its agents engage in repeated rounds of ne-

gotiation before resolving competition and producing a

winning action a

k

. It is obviously to be preferred that

the length of this competition will be very short. The `in-

stant' competition operates as follows. Each time step:

observe state x

start with leader k := random agent and Wk := 0

loop:

for all agents i other than k

Wi := Qi(x,ai) - Qi(x,ak)

if highest Wi > Wk, new leader and goto loop

(loop has terminated with winner k)

execute ak

This algorithm discovers explicitly in one timestep

what W-learning only learns over time. It also gives

us the high accuracy of telling states apart, as in W-

learning with full statespace, yet without any memory

requirements at all for W. In fact, note that `Negotiated

W-learning' is actually not learning at all since nothing

permanent is learnt. The best combination found, scor-

ing 18.212, was:

r

d

= 0:87

r

p

= 0:01

r

c

= 0:54

r

w

= 0:01

r

u

= 1:00

r

s

= 0:08

r

m

= 0:74

r

f

= 0:34

It is easily seen [Humphrys, 1995] that the competi-

tion length will be bounded by 1 and n + 1 (remember

here n = 8). With the combination above, the competi-

tion lengths seen over a run of 40000 steps (actually, for

technical reasons, 39944 steps) were:

1 234 0:6%

2 27164 68:0%

3 11978 30:0%

4 558 1:4%

5 10 0:025%

6 0

7 0

8 0

9 0

This gives a (reasonably reactive) average competition

length of 2.3 (Figure 3).

0

1

2

3

4

5

6

7

8

9

time ->

Figure 3: The `reactiveness' of Negotiated W-learning.

This is a typical snapshot of 200 steps of the best solution

found, showing how long it took to resolve competition

at each timestep. The theoretical maximum competition

length is 9 (the number of agents plus 1).

9 Maximize Collective Happiness

For completeness we describe two �nal methods, though

they have not yet been tested empirically. First, if the

global reward is roughly the sum of the agents' rewards,

maybe we should explicitly maximize collective rewards.

If the agents share the same suite of actions, we can

calculate:

max

a2A

"

n

X

i=1

Q

i

(x; a)

#

Note that this may produce compromise actions. The

executed action may be an action that none of the agents

would have suggested.

10 Minimize Collective Unhappiness

Obviously, the �nal missing method is to minimize col-

lective unhappiness. In this method, each agent builds

up a value W

i

(x) which is the sum of the su�ering it

causes all the other agents when it is being obeyed. We

look for the smallest W

i

(x). Like W-learning, agents do

not need to share common actions. Rather, they observe

r

i

and y, and build up their de�cits over time. We start

with all W

i

(x) zero or random negative. Each time step:

observe state x

find Wk(x) = lowest Wi(x)

execute ak

all agents i other than k add to Wk(x)

(so that it might not win next time round)

Again like W-learning, if agents do share common ac-

tions, we can resolve this immediately rather than wait-

ing for W-values to build up over time.
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Maximize Best
Happiness
(W=Q)

Minimize Worst
Unhappiness
(W-learning)

Maximize Collective
Happiness

Minimize Collective
Unhappiness

single-mindedness

fanatical
one-track
mind

opportunism dithering

Figure 4: The `single-mindedness' of the methods that

organise action selection without reference to a global

reward.

Memory No. updates No. updates

requirements per timestep per timestep

(per agent) when exploiting

n no.agents when learning

x subspace

X full space

Q-learning 1.Xa 1 0

Hierarchical Q-learning n.xa + 1.Xn 2 0

W=Q n.xa 1 1

Max Collective Happ. n.xa 1 n/applicable

W-learning (subspaces) n.xa + n.x 2 0

W-learning (full space) n.xa + n.X 2 0

Negotiated W-learning n.xa 1 1 to n+1

Min Collective Unhapp. n.xa + n.x n 0

General comparisons between the methods.

Memory No. updates No. updates Best solution

requirements per timestep per timestep found

when learning when exploiting

Hand-coded program n/applicable n/applicable n/applicable 8.612

(strict hierarchical)

Q-learning 10800000 1 0 6.285

Hierarchical Q-learning 9601440 2 0 13.641

W=Q 1440 1 1 15.313

Max Collective Happ. 1440 1 n/applicable n/tested

W-learning (subspaces) 1600 2 0 13.446

W-learning (full space) 9601440 2 0 14.871

Negotiated W-learning 1440 1 average 2.3 18.212

Min Collective Unhapp. 1600 8 0 n/tested

Comparisons between the methods as applied in the

house robot problem.
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10.1 Expected performance of the collective

methods

The two collective methods will generate the same sort

of behavior - keeping the majority of agents happy at

the expense perhaps of a small minority. Collective ap-

proaches are probably a bad idea if there are a large

number of agents. The animat will choose safe options,

and no one agent will be able to persuade it to take risks.

Even if one agent is facing a non-recoverable state (where

if it is not obeyed now, it cannot ever recover and reach

its goal in the future), it may still not be able to overcome

the opinion of the majority.

One can easily set up situations in which trying to

keep the majority of agents happy will lead to problems

with dithering, in which no goal is pursued to its logi-

cal end. W=Q goes to the other extreme in having only

one agent in charge, and perhaps su�ers because it does

not allow opportunism. W-learning may be a good bal-

ance between the two, allowing opportunism without the

worst of dithering. One agent is generally in charge, but

will be corrected by the other agents whenever it o�ends

them too much.

[Maes, 1989] lists desirable criteria for action selection

schemes, and in it we see this tension between wanting

actions that contribute to several goals at once and yet

wanting to stick at goals until their conclusion. We can

represent this in a diagram of `single-mindedness' (Fig-

ure 4).

11 Conclusion

In conclusion, it seems that sel�shness on the part of

agents is justi�ed - compare (see tables) the stronger

performance of the various W methods. Agents can spot

better than global functions opportunities to pick up re-

wards, so letting agents be sel�sh is more likely to max-

imise their combined rewards.

Whether it is better to build up di�erences (P �A)

(the three W-learning methods) or just use W=Q is per-

haps still an open question. Although the best one was

one of the W-learning methods, W=Q was second best.

Perhaps, as discussed in that section, opportunism isn't

important enough in this particular problem world to

separate the two approaches.

Finally, it is remarkable how di�cult it is to hand-

code the goal interleaving necessary to perform well in

this world. The solutions generated by learning are far

superior, though di�cult to visualise or translate into a

concise set of instructions.

12 Further work

As discussed, to further compare these methods, they

could be tested in an environment in which the rewards

of opportunism (and the costs of not being opportunis-

tic) are greater. The collective methods should be tested

in situations where some agents have non-recoverable

states.

12.1 Competition in Single Goal problems

Note that with the W methods, agents don't actually

have to be solving di�erent goals. This may be a novel

approach to classic single-goal problems. To solve a prob-

lem, we put together a large number of agents, all with

di�erent reward functions (and perhaps even di�erent

senses), all roughly trying to solve the same thing, and

let them struggle to solve it. If there are multiple un-

expressed behaviors, and lots of overlap, this may be a

small price to pay if there is a robust solution. We could

be similarly proigate with the number of agents in Hi-

erarchical Q-learning too, but would pay the price of a

large (x; i) statespace.

12.2 Ecosystem Minds

This work was partly inspired by Edelman's vision of a

\rainforest" mind, with life and death, growth and decay,

in a dynamic ecosystem inside the head [Edelman, 1989,

Edelman, 1992]. The idea is appealing, but Edelman

presents no explicit algorithm to show how it could be

implemented.

2

Here, with W-learning, we have the basis

for a full living and dying ecosystem inside the animat,

where what comes into existence, struggles, and perhaps

dies is not mere connections (as Edelman may in fact

mean) but entire autonomous goals.

In both W=Q and Negotiated W-learning, nothing

needs to be re-learnt when new agents arrive or old ones

leave, but the dynamics of the system will immediately

change in both. It seems Negotiated W-learning would

be more robust since agents may generate higher W-

values in the face of new competition, while in W=Q

they are stuck with �xed W-values no matter what the

competition. We could even imagine collections which

are di�cult for new agents to invade - where W-values

are currently low but would all rise, as if in defence, on

arrival of the invader. Such would be not only an ecosys-

tem mind, but a stable, elderly ecosystem mind, set in

its ways.
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MPEG Movie demo

A series of MPEG Movies of W-learning operating in a

simple `antworld', where an animat must collect food

while avoiding moving predators, can be viewed at:

http://www.cl.cam.ac.uk/users/mh10006/w.html
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