
Action Selection methods using

Reinforcement Learning

Mark Humphrys

Trinity Hall

A dissertation submitted for the degree of Doctor of Philosophy

in the University of Cambridge

Technical Report June 1997

Abstract

The Action Selection problem is the problem of run-time choice between

conicting and heterogenous goals, a central problem in the simulation of

whole creatures (as opposed to the solution of isolated uninterrupted tasks).

This thesis argues that Reinforcement Learning has been overlooked in the

solution of the Action Selection problem. Considering a decentralised model

of mind, with internal tension and competition between sel�sh behaviors,

this thesis introduces an algorithm called \W-learning", whereby di�erent

parts of the mind modify their behavior based on whether or not they are

succeeding in getting the body to execute their actions. This thesis sets

W-learning in context among the di�erent ways of exploiting Reinforcement

Learning numbers for the purposes of Action Selection. It is a `Minimize

the Worst Unhappiness' strategy. The di�erent methods are tested and their

strengths and weaknesses analysed in an arti�cial world.

Declaration

I hereby declare that this dissertation is the result of my own work and,

unless explicitly stated in the text, contains nothing which is an outcome of

work done in collaboration. No part of this dissertation has already been or

is currently being submitted for any degree, diploma or other quali�cation

at any other university.

Contact Address

Mark Humphrys

University of Cambridge, Computer Laboratory

New Museums Site, Cambridge CB2 3QG, England

Mark.Humphrys@cl.cam.ac.uk

http://www.cl.cam.ac.uk/~mh10006/

When I move, the old web address will point to the new location.

Dedication

This dissertation is dedicated to my mother and father,

to whom I owe everything.

In loving memory of my grandmother.

Contents

1 The Action Selection problem 6

1.1 Terminology . 7

1.2 Notation . 8

1.3 A brief guide to this dissertation 8

2 Reinforcement Learning 10

2.1 Q-learning . 10

2.1.1 Special case - Deterministic worlds 11

2.1.2 Special case - Di�erent action sets 11

2.1.3 Notes on expected reward 11

2.1.4 The task . 12

2.1.5 The strategy . 14

2.1.6 How Q-learning works 15

2.1.7 Notes on building a world model 16

2.2 Discrete Q-learning . 18

2.2.1 Convergence . 19

2.2.2 Discussion . 20

2.2.3 The control policy . 21

2.2.4 Special case - Absorbing states 22

3 Multi-Module Reinforcement Learning 23

3.1 Hierarchical Q-learning . 23

4 The House Robot problem 25

4.1 Simulations and Arti�cial Worlds 28

4.1.1 Separation of world from user interface 29

4.2 Notes on MDP . 30

4.3 Test of Q-learning . 32

4.3.1 Designing a Global reward function 32

4.3.2 Neural network implementation 32

4.3.3 Hand-coded programs 35

1

4.4 Test of Hierarchical Q-learning 36

4.4.1 Q-learning with subspaces 36

4.4.2 Learning Q together 37

4.4.3 Designing Local reward functions 38

5 An abstract decentralised model of mind 40

5.1 The weight W . 43

5.2 W = Drive Strength . 48

5.3 Static W=Q . 50

5.4 Static W = importance . 50

5.4.1 Static W=z . 50

5.5 Dynamic (learnt) W-values . 52

5.5.1 Dynamic W = D - F 53

5.6 A walk through the matrix . 54

5.6.1 Multiple possible winners 55

6 W-learning (Minimize the Worst Unhappiness) 57

6.1 Comparison of Q-learning and W-learning 59

6.2 Progress of competition . 59

6.2.1 Convergence . 61

6.3 Scoring W

k

(x) . 62

6.4 Strict highest W . 63

6.5 Stochastic highest W . 63

6.6 W-learning with subspaces . 64

6.6.1 Agents with heterogenous sensory worlds 66

7 W-learning with subspaces (preliminary test in Ant World) 67

7.1 Analysis of best food-�nding solution 69

7.1.1 Negative W-values . 73

7.2 Analysis of best predator-avoiding solution 74

7.3 MPEG Movie demo of basic W-learning 76

7.3.1 Rewarding on transitions or continuously 76

8 W-learning with subspaces (test in House Robot) 80

8.1 Searching for well-balanced collections 81

8.1.1 Making agents weaker or stronger 81

8.1.2 Making agents weaker or stronger without re-learning Q 82

8.1.3 No Global reward function 84

8.2 Analysis of best solution . 85

2

9 W=Q (Maximize the Best Happiness) 89

9.1 Discussion . 90

9.2 Happiness and Unhappiness 92

10 W-learning with full space 93

10.1 Strict highest W . 93

10.2 Stochastic highest W . 94

11 Negotiated W-learning 96

11.1 Reactiveness . 98

12 Collective methods 100

12.1 Maximize Collective Happiness 100

12.2 Collective W-learning (Minimize Collective Unhappiness) . . . 101

12.2.1 Strict lowest W . 101

12.2.2 Stochastic lowest W 102

12.2.3 Collective W-learning with subspaces 102

12.2.4 Negotiated Collective W-learning 102

12.3 Expected performance of Collective methods 103

12.4 Collective Equality . 105

13 Minimize the Worst Unhappiness (revisited) 106

13.1 Pure Minimize the Worst Unhappiness 107

13.2 Global v. Decentralised Calculations 109

14 Summary 110

14.1 The four approaches . 110

14.2 Winner-take-all v. Compromise actions 115

14.3 Single-Mindedness . 116

15 Related work 118

15.1 Ethology . 118

15.1.1 Time-based action selection 118

15.1.2 Low-priority activities 119

15.1.3 Dithering and Persistence 121

15.1.4 McFarland . 124

15.2 Hierarchical models . 124

15.2.1 Brooks' Subsumption Architecture 124

15.2.2 Hierarchies in Ethology 125

15.2.3 Nested Q-learning . 125

15.2.4 Feudal Q-learning . 125

15.3 Serial models . 125

3

15.3.1 Singh's Compositional Q-learning 126

15.3.2 Wixson . 126

15.3.3 Maes' Spreading Activation Networks 126

15.4 Parallel models . 127

15.4.1 Lin's Hierarchical Q-learning 127

15.4.2 Pandemonium . 127

15.4.3 Competitive Learning 128

15.4.4 Jackson . 128

15.4.5 The DAMN Architecture 129

15.4.6 The BSA Architecture 130

15.4.7 Drives . 130

15.4.8 Tyrrell . 130

15.4.9 Modular Q-learning (University of Rochester) 131

15.4.10W-learning . 131

15.5 Classi�er Systems . 132

15.5.1 Grefenstette . 132

15.5.2 Product Maximize Collective Happiness 133

15.5.3 The Economy of Mind 135

15.6 Operating Systems Theory . 136

15.7 Ethernet protocols . 136

15.8 Game Theory . 137

15.9 Economic Theory . 137

15.10Political Theory . 138

16 Conclusion 141

16.1 Empirical results . 141

16.1.1 Hand-coded programs 142

16.2 Related work . 143

16.3 Searching for the best solution relative to some global score . . 143

16.3.1 The Adaptive Landscape 144

16.4 What global policy have we learnt? 148

16.4.1 How do we maximise the ongoing sum of rewards? . . . 149

16.4.2 What the Global reward function cannot express . . . 150

17 Further work 152

17.1 Further empirical work . 152

17.2 Scaling up Reinforcement Learning 153

17.2.1 What problems can this be applied to? 154

17.2.2 Competition in Single Goal problems 154

17.3 Di�erent source of numbers 155

17.3.1 Symbolic W-learning 155

4

17.4 Parallel W-learning . 156

17.5 The Bottom-up Animat approach 156

17.6 Dynamically changing collections of agents 157

17.6.1 The Ecosystem of Mind 157

17.6.2 Invasion of strong new agents 158

18 The general form of a Society of Mind based on Reinforce-

ment Learning 160

18.1 Nested W-learning . 161

18.1.1 The generic form of Nested W-learning 164

18.2 Feudal W-learning . 166

18.3 The wasteful, overlapping mind 169

A Incremental sampling of random variables 172

A.1 Single variable (average) . 172

A.2 Single variable (time-weighted) 173

A.3 Multiple variables . 174

B Bounds 176

B.1 Bounds with a learning rate � 176

B.2 Bounds of Q-values . 176

B.3 Bounds of W-values . 177

C 2-reward reward functions 179

C.1 Policy in Q-learning . 179

C.2 Strength in W-learning . 181

C.3 Normalisation . 181

C.4 Exaggeration . 182

D 3-reward (or more) reward functions 183

D.1 Policy in Q-learning . 183

D.2 Strength in W-learning . 183

D.3 Normalisation . 184

D.4 Exaggeration . 184

E Weighted sum and weighted mean 185

F Full list of action selection methods 186

F.1 Search for compromise action 187

F.2 Use only suggested actions . 188

G Experimental Details 190

5

Chapter 1

The Action Selection problem

By Action Selection we do not mean the low-level problem of choice of action

in pursuit of a single coherent goal. Rather we mean the higher-level problem

of choice between conicting and heterogenous goals. These goals are pursued

in parallel. They may sometimes combine to achieve larger-scale goals, but

in general they simply interfere with each other. They may not have any

terminating conditions.

These two problems have often been confused in the literature - this thesis

shall argue in favour of carefully separating them. All systems solve the �rst

problem in some form. The second one has been given far less thought.

Action Selection is emerging as a central problem in the simulation of

whole creatures (as opposed to the solution of isolated uninterrupted tasks).

It is clear that many interesting systems possess multiple parallel and con-

icting goals, among which attention must endlessly switch. Animals are the

prime example of such systems.

Typically, the action selection models proposed in ethology are not de-

tailed enough to specify an algorithmic implementation (see [Tyrrell, 1993]

for a survey, and for many di�culties in translating the conceptual models

into computational ones). The action selection models that do lend them-

selves to algorithmic implementation (e.g. see [Brooks, 1991, Rosenblatt, 1995,

Blumberg, 1994, Sahota, 1994, Aylett, 1995]) then typically require a consid-

erable design e�ort. In the literature, one sees formulas taking weighted sums

of various quantities in an attempt to estimate the utility of actions. There

is much hand-coding and tuning of parameters (e.g. see [Tyrrell, 1993, x9])

until the designer is satis�ed that the formulas deliver utility estimates that

are fair.

In fact, there may be a way that these utility values can come for free.

Learning methods that automatically assign values to actions are common

in the �eld of Reinforcement Learning (RL), or learning from rewards. Re-

6

inforcement Learning propagates numeric rewards into behavior patterns.

The rewards may be objective, external value judgements, or just internally

generated numbers. This thesis compares a number of di�erent methods of

further propagating these numbers to solve the action selection problem.

The low-level problem of pursuing a single goal can be solved by straight-

forward RL, which assumes such a single goal. For the high-level problem of

choice between conicting goals we try various methods exploiting the low-

level RL numbers. The methods range from centralised and cooperative to

decentralised and sel�sh.

Instead of presenting yet another domain-speci�c program, this thesis

will be searching for general principles across domains. It will be trying to

categorize all the di�erent ways in which the action selection of behaviors

can be organized automatically.

1.1 Terminology

Terminology in this area is a problem. And one I'm not necessarily going to

solve here. These are the crucial terms I use and their explanation:

agent - the mind or part of the mind. A piece of semi-autonomous software.

The usage is from Minsky's Society of Mind [Minsky, 1986], in which

multiple agents may inhabit the same body. Agents have more au-

tonomy than traditional modules or procedures. They are autonomous

actors in their own right, not waiting on some higher level to call them.

They are not necessarily structured in any hierarchy and are not even

necessarily cooperative. In the model I introduce in x5, an agent will

control the entire body on its own if allowed. It is generally frustrated

by the presence of other agents. Baum also uses agent in his Economy

of Mind [Baum, 1996].

Behavior (e.g. [Sahota, 1994, Mataric, 1994]) is probably the term in

most common use, but is often used for modules that are not au-

tonomous actors. For somewhat-autonomous, somewhat-competing

modules within a single body, [Brooks, 1986] uses layer (though [Brooks, 1994]

also uses process), [Blumberg, 1994] uses activity (as does the ethologist

McFarland), [Tyrrell, 1993] uses system and subsystem (after the ethol-

ogist Baerends) and [Selfridge and Neisser, 1960] use demon. Other

names, from psychology, include simpleton and homunculus (of the

non-intelligent kind).

The word agent is still not altogether satisfactory since it is being

claimed by other �elds. Currently multi-agent learning implies multi-

7

bodies (e.g. [Mataric, 1994, Tan, 1993, Grefenstette, 1992]). Symbolic

AI agents imply communication, where agents negotiate among them-

selves (this is not altogether against the meaning of the term here).

And in the long term, agent may mean Internet alter egos acting as an

`agency' on behalf of the user.

creature - the body. The animat [Wilson, 1990] or arti�cial animal. In

the House Robot problem of x4, the house robot. In the Ant World

problem of x7, the ant.

The usage is from Brooks [Brooks, 1991]. The creature may be inhab-

ited by a single monolithic agent (a unitary mind) or a family of agents

(a decentralised mind).

1.2 Notation

Throughout this thesis, the notation:

D 7! d

means we adjust the estimate D once in the direction of the sample d.

For example, if we store D explicitly we may update:

D := (1� �)D + �d

where � is the learning rate. See the appendix xA to understand how

sampling with a learning rate works. Alternatively, if we are using a neural

network to return an estimate D, we may backpropagate the error D � d.

The notation:

D! E(d)

means that over many such updates the estimate D converges to the

expected value of the samples d.

1.3 A brief guide to this dissertation

This dissertation can be divided into the following parts:

8

� Chapters 1-13 - the Action Selection problem, introduction of Re-

inforcement Learning and our mathematical framework, the test prob-

lem, test of current strategies, invention and test of more decentralised

strategies, followed by: Chapter 14 - summary of the four schools of

decentralised Action Selection methods and their empirical results.

� Chapter 15 - survey of a wide variety of related work, translating

it into our mathematical framework and comparing it to our methods,

followed by: Chapter 16 - conclusions of this thesis, what we have

learnt.

� Chapter 17 - survey of possible further work, followed by: Chapter

18 - how these models might scale up into a general decentralised,

nested, non-hierarchical model of mind.

The reader familiar with RL may wish to skip Chapters 2 and 3. There are

some references in this thesis to other publications of mine,

1

but everything

necessary should be explained here. This dissertation is a self-contained

document.

First we introduce Reinforcement Learning.

1

All my publications are at:

http://www.cl.cam.ac.uk/~mh10006/publications.html

9

Chapter 2

Reinforcement Learning

A Reinforcement Learning (RL) agent senses a world, takes actions in it, and

receives numeric rewards and punishments from some reward function based

on the consequences of the actions it takes. By trial-and-error, the agent

learns to take the actions which maximize its rewards. For a broad survey of

the �eld see [Kaelbling et al., 1996].

2.1 Q-learning

Watkins [Watkins, 1989] introduced the method of reinforcement learning

called Q-learning. The agent exists within a world that can be modelled as

a Markov Decision Process (MDP). It observes discrete states of the world

x (2 X, a �nite set) and can execute discrete actions a (2 A, a �nite set).

Each discrete time step, the agent observes state x, takes action a, observes

new state y, and receives immediate reward r. Transitions are probabilistic,

that is, y and r are drawn from stationary probability distributions P

xa

(y)

and P

xa

(r), where P

xa

(y) is the probability that taking action a in state x

will lead to state y and P

xa

(r) is the probability that taking action a in state

x will generate reward r. We have

P

y

P

xa

(y) = 1 and

P

r

P

xa

(r) = 1.

Note that having a reward every time step is actually no restriction. The

classic delayed reinforcement problem is just a special case with, say, most

rewards zero, and only a small number of infrequent rewards non-zero.

The transition probability can be viewed as a conditional probability.

Where x

t

; a

t

are the values of x; a at time t, the Markov property is expressed

as:

P (x

t+1

= yjx

t

= x; a

t

= a; x

t�1

= s

t�1

; a

t�1

= b

t�1

; : : : ; x

0

= s

0

; a

0

= b

0

)

= P (x

t+1

= yjx

t

= x; a

t

= a)

10

and the stationary property is expressed as:

P (x

t+1

= yjx

t

= x; a

t

= a) = P

xa

(y) 8t

2.1.1 Special case - Deterministic worlds

The simple deterministic world is a special case with all transition probabil-

ities equal to 1 or 0. For any pair x; a, there will be a unique state y

xa

and

a unique reward r

xa

such that:

P

xa

(y) =

�

1 if y = y

xa

0 otherwise

P

xa

(r) =

�

1 if r = r

xa

0 otherwise

2.1.2 Special case - Di�erent action sets

The set of actions available may di�er from state to state. Depending on

what we mean by this, this may also possibly be represented within the

model, as the special case of an action that when executed (in this particular

state, not in general) does nothing:

P

xa

(x) = 1

for all actions a in the `unavailable' set for x.

Later in this thesis, we will be considering how agents react when the

actions of other agents are taken, actions that this agent does not recognise.

Here the action is recognised by the agent, just in some states it becomes

unavailable.

In the multi-agent case, an agent could assume that an unrecognised

action has the e�ect of `do nothing' but it might be unwise to assume without

observing.

2.1.3 Notes on expected reward

When we take action a in state x, the reward we expect to receive is:

E(r) =

X

r

rP

xa

(r)

Typically, the reward function is not phrased in terms of what action we

took but rather what new state we arrived at, that is, r is a function of the

11

transition x to y. The general idea is that we can't reward the right a because

we don't know what it is - that's why we're learning. If we knew the correct

a we could use ordinary supervised learning.

Writing r = r(x; y), the probability of a particular reward r is:

P

xa

(r) =

X

fyjr(x;y)=rg

P

xa

(y)

and the expected reward becomes:

E(r) =

X

y

r(x; y)P

xa

(y)

That is, normally we never think in terms of P

xa

(r) - we only think

in terms of P

xa

(y). Kaelbling [Kaelbling, 1993] de�nes a globally consistent

world as one in which, for a given x; a, E(r) is constant. This is equivalent

to requiring that P

xa

(r) is stationary (hence, with the typical type of reward

function, P

xa

(y) stationary).

In some models, rewards are associated with states, rather than with

transitions, that is, r = r(y). The agent is not just rewarded for arriving

at state y - it is also rewarded continually for remaining in state y. This is

obviously just a special case of r = r(x; y) with:

r(x; y) = r(y) 8x

and hence:

E(r) =

X

y

r(y)P

xa

(y)

Rewards r are bounded by r

min

; r

max

, where r

min

< r

max

(r

min

= r

max

would be a system where the reward was the same no matter what action

was taken. The agent would always behave randomly and would be of no

use or interest). Hence for a given x; a, r

min

� E(r) � r

max

.

2.1.4 The task

The agent acts according to a policy � which tells it what action to take

in each state x. A policy that speci�es a unique action to be performed

a = �(x) is called a deterministic policy - as opposed to a stochastic policy,

where an action a is chosen from a distribution P

�

x

with probability P

�

x

(a).

12

A policy that has no concept of time is called a stationary or memory-

less policy - as opposed to a non-stationary policy (e.g.`do actions a and b

alternately'). A non-stationary policy requires the agent to possess memory.

Note that stochastic does not imply non-stationary.

Following a stationary deterministic policy �, at time t, the agent observes

state x

t

, takes action a

t

= �(x

t

), observes new state x

t+1

, and receives reward

r

t

with expected value:

E(r

t

) =

X

r

rP

x

t

a

t

(r)

The agent is interested not just in immediate rewards, but in the total

discounted reward. In this measure, rewards received n steps into the future

are worth less than rewards received now, by a factor of

n

where 0 � < 1:

R = r

t

+ r

t+1

+

2

r

t+2

+ � � �

The discounting factor de�nes how much expected future rewards a�ect

decisions now. Genuine immediate reinforcement learning is the special case

 = 0, where we only try to maximize immediate reward. Low means pay

little attention to the future. High means that potential future rewards

have a major inuence on decisions now - we may be willing to trade short-

term loss for long-term gain. Note that for < 1, the value of future rewards

always eventually becomes negligible. The expected total discounted reward

if we follow policy � forever, starting from x

t

, is:

V

�

(x

t

) = E(R) = E(r

t

) + E(r

t+1

) +

2

E(r

t+2

) + � � �

= E(r

t

) + [E(r

t+1

) + E(r

t+2

) +

2

E(r

t+3

) + � � �]

= E(r

t

) + V

�

(x

t+1

)

=

P

r

rP

x

t

a

t

(r) +

P

y

V

�

(y)P

x

t

a

t

(y)

V

�

(x) is called the value of state x under policy �. The problem for the

agent is to �nd an optimal policy - one that maximizes the total discounted

expected reward (there may be more than one policy that does this). Dy-

namic Programming (DP) theory [Ross, 1983] assures us of the existence of

an optimal policy for an MDP, also (perhaps surprisingly) that there is a

stationary and deterministic optimal policy. In an MDP one does not need

memory to behave optimally, the reason being essentially that the current

state contains all information about what is going to happen next. A sta-

tionary deterministic optimal policy �

�

satis�es, for all x:

13

V

�

�

(x) = max

b2A

"

X

r

rP

xb

(r) +

X

y

V

�

�

(y)P

xb

(y)

#

For any state x, there is a unique value V

�

(x), which is the best that an

agent can do from x. Optimal policies �

�

may be non-unique, but the value

V

�

is unique. All optimal policies �

�

will have:

V

�

(x) = V

�

�

(x)

2.1.5 The strategy

The strategy that the Q-learning agent adopts is to build up Quality-values

(Q-values) Q(x; a) for each pair (x; a). If the transition probabilities P

xa

(y),

P

xa

(r) are explicitly known, Dynamic Programming �nds an optimal policy

by starting with random V (x) and random Q(x; a) and repeating forever (or

at least until the policy is considered good enough):

for all x

for all a

Q(x; a) :=

P

r

rP

xa

(r) +

P

y

V (y)P

xa

(y)

V (x) := max

a2A

Q(x; a)

This systematic iterative DP process is obviously an o�-line process. The

agent must cease interacting with the world while it runs through this loop

until a satisfactory policy is found.

The problem for the Q-learning agent is to �nd an optimal policy when

P

xa

(y), P

xa

(r) are initially unknown (i.e. we are assuming when modelling

the world that some such transition probabilities exist). The agent must

interact with the world to learn these probabilities. Hence we cannot try out

states and actions systematically as in Dynamic Programming. We may not

know how to return to x to try out a di�erent action (x; b) - we just have to

wait until x happens to present itself again. We will experience states and

actions rather haphazardly.

Fortunately, we can still learn from this. In the DP process above, the

updates of V (x) can in fact occur in any order, provided that each x will be

visited in�nitely often over an in�nite run. So we can interleave updates with

acting in the world, having a modest amount of computation per timestep.

In Q-learning we cannot update directly from the transition probabilities -

we can only update from individual experiences. In 1-step Q-learning, after

14

each experience, we observe state y, receive reward r, and update:

Q(x; a) 7! (r + max

b2A

Q(y; b))

(remembering the notation of x1.2). For example, in the discrete case,

where we store each Q(x; a) explicitly in lookup tables, we update:

Q(x; a) := (1� �)Q(x; a) + �(r + max

b2A

Q(y; b))

Since the rewards are bounded, it follows that the Q-values are bounded

(Theorem B.2). Note that we are updating from the current estimate of

Q(y; b) - this too is constantly changing.

2.1.6 How Q-learning works

Figure 2.1 illustrates how Q-learning deals with delayed reinforcement. Let

V (x) = max

b2A

Q(x; b) be the estimated value of x during Q-learning. V (x) =

Q(x; a), for some a which leads to some state y. Q(x; a) will be a combination

of immediate reward r

xa

plus the estimated value V (y). V (y) itself will be

equal to some Q(y; b), where b leads to z. Q(y; b) is a combination of r

yb

plus

V (z), and so on.

Imagine that r

xa

= r

yb

= 0, but from state z the agent can take an

action c that yields a high reward r

zc

= r (Watkins used the example of an

animal arriving at a waterhole). Then Q(z; c) will be scored high, and so V (z)

increases. Q(y; b) does not immediately increase, but next time it is updated,

the increased V (z) is factored in, discounted by . Q(y; b) and hence V (y)

increase - y is now valuable because from there you can get to z. Q(x; a) does

not immediately increase, but next time it is updated, the increased V (y) is

factored in, discounted by (hence V (z) is e�ectively factored in, discounted

by

2

). Q(x; a) increases because it led to y, and from there you can get to

z, and from there you can get a high reward. In this way the rewards are

slowly propagated back through time.

In this way, the agent can learn chains of actions. It looks like it can

see into the future - though in reality it lives only in the present (it cannot

even predict what the next state will be). Using the language of ethology

[Tyrrell, 1993], this is how credit is propagated from a consummatory action

back through the chain of appetitive actions that preceded it.

Q-learning solves the temporal credit assignment problem without having

to keep a memory of the last few chains of states. The price you pay is

that it demands repeated visits. Weir [Weir, 1984] argues that the notion of

15

waterhole
- high reward

this Q-value large

eventually (later on),
these get increased Q-values,
discounted by

eventually (even later),
these get increased Q-values,
discounted by 2

x

y

z

r

0

0

0

0

0
0

Figure 2.1: How Q-learning works (adapted from a talk by Watkins).

state needs to be expanded into a trajectory or chain of states through the

statespace, but this example shows that such a complex model is not needed

for the purposes of time-based behavior.

2.1.7 Notes on building a world model

As Q-learning progresses, the agent experiences the world's transitions. It

does not normally build up an explicit map of P

xa

(r) of the form x; a; r !

[0; 1]. Instead it sums the rewards to build up the probably more useful

mapping x; a! E(r). In fact this exact mapping itself is not stored, but is

only one component of the Q-values, which express more than just immediate

reward. If = 0 the Q-values express the exact map x; a! E(r).

The agent also experiences the state transitions and can if it chooses

build up a world model, that is, estimates of P

xa

(y). This would be the

map x; a; y ! [0; 1], whose implementation would demand a much larger

statespace. Rewards can be coalesced of course but states can't. There is

no such thing as E(y) (except for the special case of a deterministic world

x; a! y).

Moore [Moore, 1990] applies machine learning to robot control using a

16

state-space approach, also beginning without knowledge of the world's tran-

sitions. His robot does not receive reinforcement, but rather learns P

xa

(y) in

situations where the designer can specify what the desired next y should be.

Moore works with a statespace too big for lookup tables. He stores

(x; a; y) triples (memories) in a nearest-neighbour generalisation. With prob-

abilistic transitions, the agent may experience (x; a; y) at some times and

(x; a; z) at others. There may then be a conict between �nding the needed

action: x; y predicts a, and predicting what it will do: x; a predicts not y. In

fact Moore shows that this conict can arise even in a deterministic world

after limited experience (where the exemplars you use for prediction are not

exact but are the nearest neighbours only).

Sutton's DYNA architecture [Sutton, 1990, Sutton, 1990a] uses reinforce-

ment learning and builds a model in a deterministic world with a statespace

small enough to use lookup tables. It just �lls in the map x; a! y.

The point that Q-learning illustrates though is that learning an explicit

world model is not necessary for the central purpose of learning what actions

to take. Q-learning is model-free ([Watkins, 1989, x7] calls this primitive

learning). We ignore the question of what x; a actually lead to, and the

problem of storage of that large and complex mapping, and just concentrate

on scoring how good x; a is.

The agent can perform adaptively in a world without understanding it.

All it tries to do is sort out good actions to perform from bad ones. A good

introduction to this approach is [Clocksin and Moore, 1989], which uses a

state-space approach to control a robot arm. Instead of trying to explicitly

solve the real-time inverse dynamics equations for the arm, Clocksin and

Moore view this as some generally unknown nonlinear I/O mapping and

concentrate on �lling in the statespace by trial and error until it is e�ective.

They argue against constructing a mathematical model of the world in ad-

vance and hoping that the world will broadly conform to it (with perhaps

some parameter adjustment during interaction). But here we could learn the

entire world model by interaction. What would be the advantage of doing

this?

For a single problem in a given world, a model is of limited use. As

[Kaelbling, 1993] points out, in the time it takes to learn a model, the agent

can learn a good policy anyway. The real advantage of a model is to avoid

having to re-learn everything when either the world or problem change:

� Changing P

xa

(y) - when the dynamics of the world changes.

Sutton shows in [Sutton, 1990a] how a model can be exploited to deal

with a changing world. His agent keeps running over the world model

in its head, updating values based on its estimates for the transition

17

probabilities, as in Dynamic Programming. As it senses that the world

has changed it will start to do a backup in its head. For example, in

the waterhole scenario above, when it senses (by interaction with the

world) that state z no longer leads to the waterhole, it will start to do

a backup in its head, without having to wait to revisit y and x in real

life.

� Changing P

xa

(r) - when we want to give the agent new goals in the

same world.

A standard usage of reinforcement learning is to have some known

desired state y, at which rewards are given, leaving open what states

the agent might pass through on the way to y. The agent learns by

rewards propagating back from y (as in x2.1.6). The problem with this

is we then can't give the agent a new explicit goal z and say `Go there'.

We have to re-train it to go to z.

In Sutton's model, when the agent suddenly (in real life) starts getting

rewards at state z it will immediately update its model and the rewards

will rapidly propagate back in its mental updates, quicker than they

would if the states had to be revisited in real life. Kaelbling's Hierar-

chical Distance to Goal (HDG) algorithm [Kaelbling, 1993a] addresses

the issue of giving the agent new explicit z goals at run-time.

2.2 Discrete Q-learning

In the discrete case, we store each Q(x; a) explicitly, and update:

Q(x; a) := (1� �)Q(x; a) + �(r + max

b2A

Q(y; b))

for some learning rate � which controls how much weight we give to the

reward just experienced, as opposed to the old Q-estimate. We typically

start with � = 1, i.e. give full weight to the new experience. As � decreases,

the Q-value is building up an average of all experiences, and the odd new

unusual experience won't disturb the established Q-value much. As time goes

to in�nity, � ! 0, which would mean no learning at all, with the Q-value

�xed.

Remember that because in the short term we have inaccurate Q(y; b)

estimates, and because (more importantly) in the long term we have prob-

abilistic transitions anyway, the return from the same (x; a) will vary. See

xA.1 to understand how a decreasing � is generally used to take a converging

expected value of a distribution.

18

We use a di�erent � = �(x; a) for each pair (x; a), depending on how

often we have visited state x and tried action a there. When we are in a

new area of state-space (i.e. we have poor knowledge), the learning rate is

high. We will have taken very few samples, so the average of them will be

highly inuenced by the current sample. When we are in a well-visited area

of state-space, the learning rate is low. We have taken lots of samples, so

the single current sample can't make much di�erence to the average of all of

them (the Q-value).

2.2.1 Convergence

[Watkins and Dayan, 1992] proved that the discrete case of Q-learning will

converge to an optimal policy under the following conditions. The learning

rate �, where 0 � � � 1, should take decreasing (with each update) suc-

cessive values �

1

; �

2

; �

3

: : :, such that

P

1

i=1

�

i

=1 and

P

1

i=1

�

2

i

<1. The

typical scheme (and the one used in this work) is, where n(x; a) = 1; 2; 3; : : :

is the number of times Q(x; a) has been visited:

�(x; a) =

1

n(x;a)

= 1;

1

2

;

1

3

; : : :

If each pair (x; a) is visited an in�nite number of times, then

[Watkins and Dayan, 1992] shows that for lookup tables Q-learning converges

to a unique set of values Q(x; a) = Q

�

(x; a) which de�ne a stationary de-

terministic optimal policy. Q-learning is asynchronous and sampled - each

Q(x; a) is updated one at a time, and the control policy may visit them in

any order, so long as it visits them an in�nite number of times. Watkins

[Watkins, 1989] describes his algorithm as \incremental dynamic program-

ming by a Monte Carlo method".

After convergence, the agent then will maximize its total discounted ex-

pected reward if it always takes the action with the highest Q

�

-value. That

is, the optimal policy �

�

is de�ned by �

�

(x) = a

�

(x) where:

Q

�

(x; a

�

(x)) = max

b2A

Q

�

(x; b)

Then:

V

�

(x) = Q

�

(x; a

�

(x))

= max

b2A

Q

�

(x; b)

a

�

may be non-unique, but the value Q

�

is unique.

19

Initial Q-values can be random. (1 � �) typically starts at 0, wiping

out the initial Q-value in the �rst update (Theorem A.1). Although the

max

b2A

Q(y; b) term may factor in an inaccurate initial Q-value from else-

where, these Q-values will themselves be wiped out by their own �rst update,

and poor initial samples have no e�ect if in the long run samples are accu-

rate (Theorem A.2). See [Watkins and Dayan, 1992] for the proof that initial

values are irrelevant.

Note that �

i

=

1

i

p

will satisfy the conditions for any

1

2

< p � 1. The

typical � goes from 1 down to 0, but in fact if the conditions hold, then

for any t,

P

1

i=t

�

i

= 1 and

P

1

i=t

�

2

i

< 1, so � may start anywhere along

the sequence. That is, � may take successive values �

t

; �

t+1

; �

t+2

: : : (see

Theorem A.2).

2.2.2 Discussion

Q-learning is an attractive method of learning because of the simplicity of

the computational demands per timestep, and also because of this proof

of convergence to a global optimum, avoiding all local optima. One catch

though is that the world has to be a Markov Decision Process. As we shall

see, even interesting arti�cial worlds are liable to break the MDP model.

Another catch is that convergence is only guaranteed when using lookup

tables, while the statespace may be so large as to make discrete lookup tables,

with one cell for every combination of state and action, require impractically

large amounts of memory. In large statespaces one will want to use some

form of generalisation, but then the convergence proof no longer holds.

Finally, even if the world can be approximated by an MDP, and our

generalisation can reasonably approximate lookup tables, the policy that Q-

learning �nds may be surprising. The optimal solution means maximising

the rewards, which may or may not actually solve the problem the designer

of the rewards had in mind. The agent may �nd a policy that maximizes the

rewards in unexpected and unwelcome ways (see [Humphrys, 1996, x4.1] for

an example). Still, the promise of RL is that designing reward functions will

be easier than designing behavior. We will return to the theme of designing

reward functions in x4.3.1 and x4.4.3.

Also note that Q-learning's in�nite number of (x; a) visits can only be

approximated. This is not necessarily a worry because the important thing

is not the behavior and Q-values at in�nity, but rather that in �nite time it

quickly gets down to focusing on one or two actions in each state. We usually

�nd that a greedy policy (execute the action with the highest Q-value) is an

optimal policy long before the Q-values have converged to their �nal values.

20

2.2.3 The control policy

In real life, since we cannot visit each (x; a) an in�nite number of times, and

then exploit our knowledge, we can only approximate Q-learning. We could

do a large �nite amount of random exploration, then exploit our knowledge.

In fact this is the simple method I use on the smaller Q-learning statespaces

in this work (x4.4.1).

On the larger-statespace Q-learning problems, random exploration takes

too long to focus on the best actions, and also in a generalisation (x4.3.2) it

will cause a huge amount of noise, so instead I use a method that interleaves

exploration and exploitation. The idea is to start with high exploration and

decrease it to nothing as time goes on, so that after a while we are only

exploring (x; a)'s that have worked out at least moderately well before.

The speci�c control policy used is a standard one in the �eld and orig-

inally comes from [Watkins, 1989] and [Sutton, 1990]. The agent tries out

actions probabilistically based on their Q-values using a Boltzmann or soft

max distribution. Given a state x, it tries out action a with probability:

p

x

(a) =

e

Q(x;a)

T

P

b2A

e

Q(x;b)

T

Note that e

Q(x;a)

T

> 0 whether the Q-value is positive or negative, and

that

P

a

p

x

(a) = 1. The temperature T controls the amount of exploration

(the probability of executing actions other than the one with the highest Q-

value). If T is high, or if Q-values are all the same, this will pick a random

action. If T is low and Q-values are di�erent, it will tend to pick the action

with the highest Q-value.

At the start, Q is assumed to be totally inaccurate, so T is high (high

exploration), and actions all have a roughly equal chance of being executed.

T decreases as time goes on, and it becomes more and more likely to pick

among the actions with the higher Q-values, until �nally, as we assume Q is

converging to Q

�

, T approaches zero (pure exploitation) and we tend to only

pick the action with the highest Q-value:

p

x

(a) =

�

1 if Q(x; a) = max

b2A

Q(x; b)

0 otherwise

That is, the agent acts according to a stochastic policy which as time

goes on becomes closer and closer to a deterministic policy.

In fact, while I use simple random exploration (no Boltzmann) to learn the

Q-values on the small statespaces (x4.4.1), when it came to testing the result

21

instead of using a deterministic strict highest Q I used a low temperature

Boltzmann. Strict determinism can lead to a creature with brittle behavior.

If there are a number of more-or-less equally good actions with very little

di�erence in their Q-values, we should probably rotate around them a little

rather than pick the same one every time.

2.2.4 Special case - Absorbing states

An absorbing state x is one for which, 8a:

P

xa

(x) = 1

P

xa

(y) = 0 if y 6= x

Once in x, the agent can't leave. The problem with this is that it will

stop us visiting all (x; a) an in�nite number of times. Learning stops for all

other states once the absorbing state is entered, unless there is some sort of

arti�cial reset of the experiment.

In a real environment, where x contains information from the senses, it

is hard to see how there could be such thing as an absorbing state anyway,

since the external world will be constantly changing irrespective of what the

agent does. It is hard to see how there could be a situation in which it could

be relied on to supply the same sensory data forever.

No life-like arti�cial world would have absorbing states either (the one I

use later certainly does not).

22

Chapter 3

Multi-Module Reinforcement

Learning

In general, Reinforcement Learning work has concentrated on problems with

a single goal. As the complexity of problems scales up, both the size of

the statespace and the complexity of the reward function increase. We will

clearly be interested in methods of breaking problems up into subproblems

which can work with smaller statespaces and simpler reward functions, and

then having some method of combining the subproblems to solve the main

task.

Most of the work in RL either designs the decomposition by hand

[Moore, 1990], or deals with problems where the sub-tasks have termination

conditions and combine sequentially to solve the main problem

[Singh, 1992, Tham and Prager, 1994].

The Action Selection problem essentially concerns subtasks acting in par-

allel, and interrupting each other rather than running to completion. Typi-

cally, each subtask can only ever be partially satis�ed [Maes, 1989].

3.1 Hierarchical Q-learning

Lin has devised a form of multi-module RL suitable for such problems, and

this will be the second method tested below.

Lin [Lin, 1993] suggests breaking up a complex problem into sub-problems,

having a collection of Q-learning agents A

1

; : : : ; A

n

learn the sub-problems,

and then have a single controlling Q-learning agent which learns Q(x; i),

where i is which agent to choose in state x. This is clearly an easier function

to learn than Q(x; a), since the sub-agents have already learnt sensible ac-

tions. When the creature observes state x, each agent A

i

suggests an action

23

a

i

. The switch chooses a winner k and executes a

k

.

Lin concentrates on problems where subtasks combine to solve a global

task, but one may equally apply the architecture to problems where the sub-

agents simply compete and interfere with each other, that is, to classic action

selection problems.

24

Chapter 4

The House Robot problem

We will test the action selection methods in use in the hypothetical world

of a `house robot'. The house robot is given a range of multiple parallel

and conicting goals and must partially satisfy them all as best as it can.

We will test Q-learning and Hierarchical Q-learning in this world, and then

introduce a number of new methods, implementing and testing each one as

it is introduced.

Consider what kind of useful systems might have multiple parallel, partially-

satis�ed, non-terminating goals. Inspired by a familiar such system, the com-

mon household dog, I asked the question: What could an autonomous mobile

robot do in the home?

Consider that the main fears of any household are (a) �re, (b) burglary

and (c) intruders/attackers. These all tend to happen because there is only

one or no people at home or the family is asleep. At least, none of these

things would happen if there were enough alert adults wandering round all

the time.

So in the absence of enough alert adults, how about an alert child's toy?

Even if about all a small mobile robot could do was cover ground and look

at things, it might still be useful. In this hypothetical scenario, the robot

would be a wandering security camera, transmitting pictures of what it saw

to some remote mainframe. Imagine it as a furry, big-eyed, child's toy, with

no weapons except curiosity. The intruder breaks into the house and the

toy slowly wanders up to him and looks at him, and that's it. There's no

point in him attacking it since his picture already exists somewhere remote.

If the continuous signal from the robot is lost, some human will come and

investigate. The house robot could also double as a mobile wandering smoke

alarm, and default perhaps to a vacuum cleaner when nothing was happening.

Microworlds have (very often justi�ably) a bad press, so I must state

from the outset that I am not interested in realism but in producing a hard

25

action selection problem, and also one that is di�erent from the normal ones

encountered say in animal behavior. A more detailed defence of this problem

follows shortly (x4.1).

In the arti�cial grid-world of Figure 4.1, the positions of entrances and

internal walls are randomised on each run. Humans are constantly making

random crossings from one entrance to another. The creature (the house

robot) should avoid getting in the way of family, but should follow strangers.

It must go up close �rst to identify the human as family or stranger. Dirt

trails after all humans. The creature picks up dirt and must occasionally

return to some base to re-charge and empty its bag. Fire starts at random

and then grows by a random walk. The creature puts out the �re on a square

by moving onto it. The world is not a torus - the creature is blocked by inner

walls and outer walls and also can't leave through the entrances.

1

The creature can only detect objects in a small radius around it and

can't see through walls - with the exception of smoke, which can be detected

even if a wall is in the way. Each time step, the creature senses state x =

(d; i; p; w; h; c; f; w

f

) where:

� d is the direction (but not distance) of the nearest visible dirt, and

takes values 0-7 (the primary and secondary compass directions, see

Figure 4.2), 8 (when dirt is on the same square) and 9 (no dirt visible

within a small radius).

� i is whether the vacuum bag is full and needs emptying, and takes

values 0 and 1.

� p (0-9) is the direction of the plug.

� w (0-9) is the direction of the nearest visible wall.

� h (0-9) is the direction of the nearest visible human.

� c is the classi�cation of the human, taking values 0 (no current classi-

�cation), 1 (known member of family) and 2 (stranger).

1

Problem Details - Every 3 timesteps, the human drops a piece of dirt in its vicinity,

up to a maximum amount of dirt on the grid of 5. What tends to happen is the amount

of dirt usually stays up at 5, and every time the creature picks up a piece, the human

will soon drop another. The creature can only carry 10 pieces of dirt before it has to

return to base to empty its bag. The world is a 15 x 15 grid with walls all around the

edge (broken by 3 entrances), and two randomly-placed internal walls. The topology is

randomised every 700 timesteps. The probability of a �re starting is

1

70

per timestep.

Every 10 timesteps, an existing �re grows by a random walk of 1 square.

26

Figure 4.1: The House Robot problem. Here, the building is on �re, dirt is

scattered everywhere, and a stranger is in the house.

27

87 3

6 5 4

0 1 2

9 (not visible)

(here)

Figure 4.2: The creature senses the relative direction of things within a small

radius around it.

� f (0-9) is the direction of the nearest visible smoke.

� w

f

is whether the smoke is being detected through a wall, and takes

values 0 and 1.

The creature takes actions a, which take values 0-7 (move in that direc-

tion) and 8 (stay still).

The fact that its senses are limited, and that there are other, unpre-

dictably behaving entities in the world, means that we must give up on

being able to consistently predict the next state of the world. For example,

AI planning techniques that assume a static world would be of limited use.

The creature must be tightly coupled to the world by continuous observation

and reaction.

Given its limited sensory information, the creature needs to develop a

reactive strategy to put out �re, clean up dirt, watch strangers, and regularly

return to base to re-charge. When we specify precisely (x4.3.1) what we want,

we �nd that the optimum is not any strict hierarchy of goals. Rather some

interleaving of goals is necessary, with di�erent goals partially satis�ed on

the way to solving other goals. Such goal-interleaving programs are di�cult

to write and make good candidates for learning.

4.1 Simulations and Arti�cial Worlds

This arti�cial world was not constructed to be a simulation of a robot en-

vironment. There is no attempt to simulate realistic robot sensors. There

28

is no explicit simulated noise, though we do have limited and confusing sen-

sory information. All I am interested in is setting up a hard action selection

problem. And it is hard, as we shall see.

Tyrrell [Tyrrell, 1993, x1.1] defends the value of such microworld experi-

ments in relation to the Action Selection problem at least. At the moment,

it is di�cult enough to set up a robotics experiments with a single goal.

It is still harder to set up multiple conicting goals and pose decent action

selection problems to them.

We can see how far this is from actual robotics. It is unrealistic to think

that the robot could reliably classify objects in the world as `dirt', `wall' etc,

based on its senses. In fact, it seems to imply that the job of perception is to

translate sensory data into symbolic tags. In fact, I make no such claim. I

am merely trying to construct a hard action selection problem in a way that

we can think about it easily, understand its di�culty, and suggest possible

strategies.

Similarly, the actions here (of moving in a particular direction) may actu-

ally need to be implemented using lower-level mechanisms. Again, the object

is to concentrate on the higher-level problems of the overall strategy.

Since the methods we will test take as input any vector of numbers, and

can produce any vector as output, they can be reapplied afterwards to other

problems with more realistic sensory and motor data. RL has been applied

e.g. by [Mataric, 1994] to multiple, real autonomous mobile robots. I make

no stronger assumptions about the world than RL does, so if RL can be

applied to real robots then so can my work.

Also this work is not just about robotic or animal-like behavior prob-

lems. We are addressing the general issue of a system with multiple con-

icting parallel goals. The model could be applied, for example, to such

problems as lift scheduling, intelligent building control or Internet agents

(see [Charpillet et al., 1996]).

4.1.1 Separation of world from user interface

Much time is often spent on the visual user interface of such arti�cial worlds.

But the only important thing is the actual problem to be solved.

In my implementation, I rigorously separate the essential part of the

program, the equations to be solved to represent interaction with the world,

from the unessential part, any visual representation showing on-screen what

is happening. As a result, I can do long learning runs in hidden, overnight

batch jobs, being just number-crunching with no user interface at all.

Both the arti�cial world and the learning algorithms here were imple-

mented in C++.

29

food food

Figure 4.3: Probabilistic transitions P

xa

(y).

4.2 Notes on MDP

Note that sensing direction but not distance means that features of the world

that are deterministic can actually appear probabilistic to the agent. This

is illustrated in Figure 4.3. When in the situation on the left, the agent will

experience: x = (food is North), a = (move North), y = (got food). When

in the situation on the right, the agent will experience: x = (food is North),

a = (move North), y = (food is North).

In fact, as shown in Figure 4.4, the world is not exactly an MDP. (x;North)

leads to state y, and (x;NorthEast) also leads to state y. But the probability

of (y;East) leading to an immediate reward depends on the agent's policy. If

it tends to take action (x;NorthEast), the value of y will be higher than if it

tends to take action (x;North). But it will not necessarily learn to take action

(x;NorthEast) as a result - that would just be normal learning, where it can

tell the states apart. (x;North) is just as likely a policy because (x;North)

is also rewarded when the value of y increases.

P

xa

(r) is non-stationary. In fact, the arti�cial world is a Partially-Observable

MDP [Singh et al., 1994]. But it is very much a non-malicious one, and can

be reasonably approximated as a probabilistic MDP - this will be proved

shortly by the success of RL techniques when compared against hand-coded

solutions in this world.

30

y1 y2

x

z
0 r

0
0

food

y

Figure 4.4: Non-stationary probabilistic transitions P

xa

(r). The states' po-

sitions in the diagram correspond to their geographical positions. x is the

state `food is EastNorthEast'. y is the state `food is East'. The agent sees

both y1 and y2 as the same state y. The quantities on the arrows are the

rewards for that transition.

31

4.3 Test of Q-learning

The �rst method we apply in this world is a single monolithic Q-learning

agent learning from rewards.

4.3.1 Designing a Global reward function

Reinforcement Learning is attractive because it propagates rewards into be-

havior, and presumably reward functions (value judgements) are easier to

design than behavior itself. Even so, designing the global reward function

here is not easy (see [Humphrys, 1996, x4.1] for an example of accidentally

designing one in which the optimum solution was to jump in and out of the

plug non-stop). Later (x8.1.3) we will ask if we can avoid having to design

this explicitly:

reward for single step from x to y

points := 0

once-off type scores:

if (got in way of family) subtract 1 point

if (picked up dirt) add 1 point

if (put out fire) add 5 points

continuous-type scores:

if (arrived at plug) add 0.1 points

if (stranger exists unseen) subtract 0.1 points

if (fire exists) subtract 0.1 points

if (fire is large) subtract 0.5 points

return points

Note that our global reward function, in looking at things from the house's

point of view, actually refers to information that may not be in the state x,

e.g. `�re exists' causes punishment even if the creature cannot see the �re.

From the creature's point of view, this is a stochastic global reward function,

punishing it at random sometimes for no apparent reason. Such a stochastic

reward function is not disallowed under our Markov framework provided that

P

xa

(r) is stationary.

4.3.2 Neural network implementation

The number of possible states x is 1.2 million, and with 9 possible actions we

have a state-action space of size 10.8 million. To hold each Q(x; a) explicitly

as a oating point number, assuming 4 byte oats, would therefore require 40

M of memory, which on my machine anyway was becoming impractical both

32

in terms of allocating memory and the time taken to traverse it. On many

machines, 40 M is not impractical, but we are approaching a limit. Just add

two more objects to the world to be sensed and we need 4000 M memory.

In any case, perhaps an even more serious problem is that we have to

visit all 10.8 million state-action pairs a few times to build up their values

if data from one is not going to be generalized to others. So for reasons of

both memory and time, instead of using lookup tables we need to use some

sort of generalisation - here, multi-layer neural networks.

2

Following Lin [Lin, 1992], because we have a small �nite number of ac-

tions we can reduce interference by breaking the state-action space up into

one network per action a. We have 9 separate nets acting as function approx-

imators. Each takes a vector input x and produces a oating point output

Q

a

(x) = Q(x; a). Each net is responsible for a di�erent action a. This also

allows us to easily calculate the max

b2A

Q(y; b) term - just enumerate the

actions and get a value from each network.

3

We also note that, as in [Rummery and Niranjan, 1994], although we

have a large statespace, each element of the input vector x takes only a small

number of discrete values. So instead say of one input unit for (d) taking

values 0-9, we can have 10 input units taking values 0 or 1 (a single unit will

be set to 1, all the others set to 0). This makes it easier for the network

to identify and separate the inputs. Employing this strategy, we represent

all possible inputs x in 57 input units which are all binary 0 or 1. Also

like [Rummery and Niranjan, 1994], we found that a small number of hidden

units (10 here) gave the best performance. To summarise, we have 9 nets.

Each has 57 input units, 10 hidden units, and a single output unit.

As [Tesauro, 1992] notes, learning here is not like ordinary supervised

learning where we learn from (Input,Output) exemplars. Here we're not

presenting constant (x;Q

�

(x)) exemplars to the network but instead we are

learning from estimates of Q

�

:

Q

a

(x) 7! (r + max

b2A

Q

b

(y))

where the Q

b

(y) value is an estimate, and may come from a di�erent

2

The same would hold if our input x was a vector of real numbers. In this case we

could also use neural networks but they would be of a di�erent architecture to the ones

described here. Note also that in this case we e�ectively can't see the same state twice.

3

If we had a large action space, the actions would need to be generalised too, e.g. we

could have a single neural net with vector input x; a and a single oating point output

Q(x; a). The problem then is to calculate the max

b2A

Q(y; b) term - we can't enumerate

the actions. See [Kaelbling et al., 1996, x6.2] for a survey of generalising action spaces.

33

network to the Q

a

(x) estimate. We are telling the network to update in a

certain direction. Next time round we may tell it to update in a di�erent

direction. That is, we need to repeatedly apply the update as the estimate

Q

b

(y) improves. The network needs a lot of updates to learn, but that doesn't

mean we need a lot of di�erent interactions with the world. Instead we

repeatedly apply the same set of examples many times. Also, we don't want

to replay an experience multiple times immediately. Instead we save a number

of experiences and mix them up in the replay, each time factoring in new

Q(y)'s.

Our strategy roughly follows [Lin, 1992]. We do 100 trials. In each trial

we interact with the world 1400 times, remember our experiences, and then

replay the experiences 30 times, each time factoring in more accurate Q(y)

estimates. Like Lin, we use backward replay as more e�cient (update Q(y)

before updating the Q(x) that led to it).

[Lin, 1992] points out doing one huge trial and then replaying it is a bad

idea because the actions will all be random. With lookup tables, we can just

experience state-action pairs randomly (x2.2.1), but with neural networks,

replaying lots of random actions is a bad idea because the update a�ects the

values of other entries. The few good actions will be drowned by the noise of

the vast majority of bad actions. A better strategy is to continually update

the control policy to choose better actions over time. Doing lots of short

trials, replaying after each one, allows our control policy to improve for each

trial.

As Lin points out [Lin, 1993], experience replay is actually like building

a model and running over it in our head, as in Sutton's DYNA architecture

(x2.1.7). Too few real-world interactions and too much replay would lead to

over�tting, where the network learns that state x = (2; 0; 7; 3; 4; 1; 7; 1) and

action a = (2) lead to the picking up dirt reward, when it should learn that

state x = (2; 0; �; �; �; �; �; �) and action a = (2) lead to that reward.

Throughout this thesis, for lookup tables we use learning rate � = 1;

1

2

;

1

3

; : : :,

and start with the tables randomised. For neural networks we use backprop-

agation learning rate 0.5, and start with all weights small random positive or

negative. For the Q-learning throughout we use discounting factor = 0:6.

Adjusting the amount of replay, and the architecture of the network,

the most successful monolithic Q-learner, tested over 20000 steps (involving

30 di�erent randomised houses) scored an average of 6.285 points per 100

steps. The coding into 57 input units was the only way to get any decent

performance.

34

4.3.3 Hand-coded programs

As it turns out, 6.285 points per 100 steps is not an optimal policy. Writing

a strict hierarchical program to solve the problem, with attention devoted to

humans only when there was no �re, and attention devoted to dirt only when

there was no �re or humans, could achieve a score of 8.612. When state x

is observed, the hand-coded program (the best of a range of such programs)

generates action a as follows:

if (smoke visible)

{

if (wall in way)

stochastic move towards smoke

else

move towards smoke

}

else if (human visible)

{

if (classification = family)

move in opposite direction to human

else

move towards human

}

else if (full)

{

if (plug visible)

move towards plug

else

random move other than towards wall

}

else

{

if (dirt visible)

move towards dirt

else

random move other than towards wall

}

All strategies, hand-coded or learnt, must deal with the fact that there

is no memory. Note that the hand-coded program implements a stochastic

policy.

So why did Q-learning not �nd an optimal policy? The answer is because

we are not using lookup tables, and we do not have time anyway to experience

each full state. If the world was an MDP with lookup tables and we had

in�nite time, then yes, we couldn't beat ordinary Q-learning (x2.2.1).

35

But because these conditions don't hold, we can go on and explore better

action selection methods than Q-learning. Note that we don't actually know

how good the optimum policy will be. As we shall see, we will be able to do

a lot better than this, but will still not know at the end of the thesis if we

have found the best possible solution.

Clearly, it is di�cult to learn such a complex single mapping. We will

now look at ways in which the learning problem may be broken up. First we

test Hierarchical Q-learning.

4.4 Test of Hierarchical Q-learning

To implement Hierarchical Q-learning in the House Robot problem, we set

the following 5 agents to build up personal Q

i

(x; a) values. They learn by

reference to personal reward functions r

i

. The switch then learns Q(x; i)

from the global reward function as before.

A

d

senses: (d,i)

reward: if (picked up dirt) 1 else 0

A

p

senses: (p)

reward: if (arrived at plug) 1 else 0

A

s

senses: (h,c)

reward: if (ID=stranger and visible) 1 else 0

A

m

senses: (h,c)

reward: if (ID=family and here) 0 else 1

A

f

senses: (f,w

f

)

reward: if (put out �re) 1 else 0

4.4.1 Q-learning with subspaces

Each agent need only sense the subspace of (d; i; p; w; h; c; f; w

f

) that is rele-

vant to its reward function. To be precise, agent A

i

need only work with the

minimum collection of senses required to make P

xa

(y), P

i

xa

(r) stationary.

4

There is no advantage to having the agents sense the full space for learning

Q. If it is given extra unnecessary senses, it will just learn the same Q-values

repeated.

For example, the plug-seeking agent A

p

has a reward function r(x; y) =

r(p

t

; p

t+1

) that only references the location of the plug, so it need only sense

(p). Any extra senses will not a�ect the policy it learns - it will suggest

4

That is, if the full-statespace transitions were stationary to begin with (recall x4.2).

36

the same action independent of the values of d; i; w; h; c; f; w

f

. It builds up

Q

p

((p); a) values where:

Q

p

((p); a) � Q

p

((d; i; p; w; h; c; f; w

f

); a) 8d; i; w; h; c; f; w

f

When the creature interacts with the world, each agent translates what

is happening into its own subspace. For example (using the notation x,a ->

y):

creature sees (5,0,8,3,1,1,1,0),(5) -> (9,1,1,3,9,1,1,0)

Ad sees (5,0),(5) -> (9,1)

Ap sees (8),(5) -> (1)

As sees (1,1),(5) -> (9,1)

Am sees (1,1),(5) -> (9,1)

Af sees (1,0),(5) -> (1,0)

As well as requiring less memory, this builds up the Q-values much

quicker. Here, all of the subspaces are small enough to use lookup tables.

The switch still sees the full state x, and its Q(x; i) mapping needs to be

implemented as a generalisation. As before in x4.3.2, we reduce interference

by breaking the state-action space up into one network per `action' i. The

switch is implemented as 5 neural networks. Each takes a vector input x and

produces a oating point output Q

i

(x) = Q(x; i). Each net is responsible for

a di�erent `action' i.

We try to keep the number of agents low, since a large number of agents

will require a large (x; i) statespace. As before, we go through a number of

trials, the switch replaying its experiences after each one.

Here the agents share the same suite of actions a = 0-8, but in general

we may be interested in breaking up the action space also.

4.4.2 Learning Q together

The agents can all learn their Q-values together in parallel. The agent A

k

that suggested the executed action a

k

can update:

Q

k

(x; a

k

) := (1� �)Q

k

(x; a

k

) + �(r

k

+ max

b2A

Q

k

(y; b))

If the agents share the same suite of actions (which we don't assume in

general) then in fact all other agents can learn at same time. We can update

for all i:

37

Q

i

(x; a

k

) := (1� �)Q

i

(x; a

k

) + �(r

i

+ max

b2A

Q

i

(y; b))

using their di�erent reward functions r

i

. We can do this because Q-

learning is asynchronous and sampled (we can learn from the single transi-

tion, no matter what came before and no matter what will come after).

5

We must ensure, when learning together, that all agents experience a

large number of visits to each of their (x; a). An agent shouldn't miss out

on some (x; a) just because other agents are winning. I simply use random

winners during this collective Q-learning phase.

4.4.3 Designing Local reward functions

If an agent is of the form:

A

i

reward: if (good event) r else s

where r > s, then it is irrelevant what r and s actually are, the agent will

still learn the same policy (Theorem C.1). So in particular setting r = 1 and

s = 0 here doesn't reduce our options. If we replace 1 above by any number

> 0, the agent still learns the same pattern of behavior. It still sends the

same preferred action a

i

to the switch.

This does not hold for reward functions with 3 or more rewards (see xD.1),

where relative di�erence between rewards will lead to di�erent policies. We

mentioned in x2.2.2 that it can be di�cult to write a reward function so that

maximising the rewards solves your problem. For 3-reward (or more) reward

functions such as our global reward function (x4.3.1), experiment quickly

shows that it is not simply a matter of r

max

for all good things and r

min

for

all bad things.

It can be di�cult to predict what behavior maximising the rewards will

lead to. For example, because it looks at future rewards, an agent may

voluntarily su�er a punishment now in order to gain a high reward later, so

simply coding a punishment for a certain transition may not be enough to

ensure the agent avoids that transition. Reward functions are the \black art"

of Reinforcement Learning, the place where design comes in. RL papers often

list unintuitive and apparently arbitrary reward schemes which one realises

may be the result of a lengthy process of trial-and-error.

5

Note that in [Humphrys, 1995, x3] I assumed that agents share the same suite of

actions.

38

To summarise, much attention has been given to breaking up the states-

pace of large problems, but the reward functions do not scale well either.

Multi-reward functions like our global reward function are hard to design.

It is much easier to design specialised 2- or 3-reward local functions (these

2-reward functions could not be easier to design: 1 for the good thing and

0 otherwise will do). Hierarchical Q-learning has not got rid of the global

reward function, but we shall be attempting to do that later.

With the same replay strategy as before, and the same number of test

runs, the Hierarchical Q-learning system scored 13.641 points per 100 steps,

a considerable improvement on the single Q-learner. This is also considerably

better than the hand-coded program - now we see that the optimum is not

any strict hierarchy of goals. Rather some interleaving of goals is necessary.

Again though, Hierarchical Q-learning did not �nd an optimal policy. We

are going to introduce methods which will perform even better. It did not

�nd an optimal Q

�

(x; i) policy because again, we are not using lookup tables,

and do not have time anyway to experience each full state.

39

Chapter 5

An abstract decentralised

model of mind

Looking at exactly what Q(x; i) are learnt in the previous method, the switch

learns things like - if dirt is visible A

d

wins because it expects to make a good

contribution to the global reward - otherwise if the plug is visible A

p

wins

because it expects to make a (smaller) contribution. But the agents could

have told us this themselves with reference only to their personal rewards.

In other words, the agents could have organised themselves like this in the

absence of a global reward.

In this chapter I consider how agents might organise themselves sensibly

in the absence of a global reward. Watkins in his PhD [Watkins, 1989] was

interested in learning methods that might plausibly take place within an

animal, involving a small number of simple calculations per timestep, and so

on. Similarly, I am looking for more biologically-plausible action selection,

something that could plausibly self-organize in the development of a juvenile,

that would not require an all-knowing homunculus. Like Watkins, I will

propose methods deriving from this motivation rather than trying to copy

anything seen in nature.

The starting point for this exploration of decentralised minds is Rod-

ney Brooks' contrast in [Brooks, 1986] between the traditional, vertical AI

architecture (Figure 5.1) where representations come together in a central

`reasoning' area, and his horizontal subsumption architecture (Figure 5.2)

where there are multiple paths from sensing to acting, and representations

used by one path may not be shared by another.

Brooks' method is to build full working robots at each stage. He builds in

layers: layer 1 is a simple complete working system, layers 1-2 together form

a complete, more sophisticated system, layers 1-3 together form a complete,

even more sophisticated system, and so on. Lower layers do not depend

40

on the existence of higher layers, which may be removed without problem.

Higher layers may interfere with the data ow in layers below them - they

may `use' the layers below them for their own purposes. To be precise,

each layer continuously generates output unless inhibited by a higher layer.

Subsumption is where a higher layer inhibits output by replacing it with its

own signal. If a higher layer doesn't interfere, lower layers just run as if it

wasn't there.

Brooks' model develops some interesting ideas:

� The concept of default behavior. e.g. the `Avoid All Things' layer 1

takes control of the robot by default whenever the `Look For Food'

layer 2 is idle. Whenever a higher layer is idle, there is always someone

lower down willing to take over.

� Multiple parallel goals. There are multiple candidates competing to be

given control of the robot, e.g. control could be given to layer 1, which

has its own purposes, or to layer 5, which has di�erent purposes (and

may use layers 1-4 to achieve them). Which to give control to may

not be an easy decision - we may �nd it hard to rank them in a strict

hierarchy. Multiple parallel goals are seen everywhere in nature, e.g.

the conict between feeding and vigilance in any animal with predators.

� The concept of multiple independent channels connecting sensing to

action. Brooks breaks with the traditional, vertical AI architecture

of having a `perception' subsystem, whose job it is to deliver a repre-

sentation of the world to some central symbolic module where all the

`real' intelligence resides. Instead, he has multiple sensing-to-action

channels, working in parallel, each processing sensory information in

di�erent ways for its own purposes, some crude, some sophisticated.

Each layer may live in an entirely di�erent sensory world.

The logical development of this kind of decentralisation is the model in

Figure 5.3. Here, the layers (which we now call agents) have become peers,

not ranked in any hierarchy. Each can function in the absence of all the

others. Each agent is connected directly from senses to action and will drive

the body in a pattern of behavior if left alone in it. Each is frustrated by the

presence of other agents, who are trying to use the body to implement their

plans. Brooks' hierarchy would be a special case of this where higher-level

agents happen to always win when they compete against lower-level ones.

This is actually the model that Lin's Hierarchical Q-learning used. Each

agent must send its actions to a switch which will either obey or refuse it.

In Hierarchical Q-learning, the switch is complex and what is sent is simple

41

I O

Sy
m

bo
lic

 r
ea

so
ni

ng

Pe
rc

ep
tio

n

T
as

k
ex

ec
ut

io
n

Figure 5.1: The traditional, vertical AI architecture. The central intelligence

operates at a symbolic level.

I O

.

layer 1

layer 2

layer 3

Figure 5.2: Brooks' horizontal subsumption architecture.

42

.

I

O

Figure 5.3: Competition among peer agents in a horizontal architecture.

Each agent suggests an action, but only one action is executed. Which agent

is obeyed changes dynamically.

(a constant action a

i

(x)). Now we ask if we can make the switch simple,

and what is sent more complex. We ask: Rather than having a smart switch

organise the agents, Can the agents organise themselves o� a dumb switch?

5.1 The weight W

To answer this, I tried to look at it from an agent's point of view. Agents

can't know about the global system, or the mission of the creature as a whole.

Each must live in a local world. Here agents have no explicit knowledge of

the existence of any other agents. Each, if you like, believes itself to be the

entire nervous system.

1

The basic model is that when the creature observes state x, the agents

suggest their actions with numeric strengths or Weights W

i

(x) (I call these

W-values). The switch in Figure 5.3 becomes a simple gate letting through

the highest W-value. To be precise, the creature contains agents A

1

; : : : ; A

n

.

In state x, each agent A

i

suggests an action a

i

. The switch �nds the winner

k such that:

1

Perhaps there is some evolutionary plausibility in this. Consider that the next step

after getting a simple sensor-to-e�ector link working is not a hierarchy or a co-operative

architecture but rather a mutation where, by accident, two links are built, and each of

course tries to work the body as if it were alone.

43

W

k

(x) = max

i21;:::;n

W

i

(x)

and the creature executes a

k

. We call A

k

the leader in the competition

for state x at the moment, or the owner of x at the moment. The next time

x is visited there might be a di�erent winner.

This model will work if we can �nd some automatic way of resolving

competition so that the `right' agent wins. The basic idea is that an agent

will always have an action to suggest (being a complete sensing-and-acting

machine), but it will `care' some times more than others. When no predators

are in sight, the `Avoid Predator' agent will continue to generate perhaps

random actions, but it will make no di�erence to its purposes whether these

actions are actually executed or not. When a predator does come into sight

however, the `Avoid Predator' agent must be listened to, and given priority

over the default, background agent, `Wander Around Eating Food'.

For example, in Figure 5.4, when the creature is not carrying food, the

`Food' agent tends to be obeyed. When the creature is carrying food, the

`Hide' agent tends to be obeyed. The result is the adaptive food-foraging

creature of Figure 5.5.

Note that the `Hide' agent goes on suggesting the same action with the

same W in all situations. It just wants to hide all the time - it has no idea

why sometimes it is obeyed, and other times it isn't.

We can draw a map of the state-space, showing for each state x, which

agent succeeds in getting its action executed. Clearly, a creature in which

one agent achieves total victory (wins all states) is not very interesting. It

will be no surprise what the creature's behavior will be then - it will be the

behavior of the agent alone. Rather, interesting creatures are ones where the

state-space is fragmented among di�erent agents (Figure 5.6).

In fact, with the agents we will be using, creatures entirely under the

control of one agent will be quite unadaptive. Only a collection of agents

will be adaptive, not any one on its own (see x7.3 later).

One of the advantages of Brooks' model is that layer 2, for example, does

not need to re-implement its own version of the wandering skill implemented

in layer 1 - it can just allow layer 1 be executed when it wants to use it.

Similarly here, even though agents have their own entire plan for driving the

creature (for every x they can suggest an a), they might still come to depend

on each other. An agent can use another agent by learning to cede control

of appropriate areas of state-space (which the other agent will take over).

44

carrying
food

Hide

Food
go to food,
W=5

go to nest,
W=9

go to nest

not carrying
food

Hide

Food
go to food,
W=10

go to nest,
W=9

go to food

Figure 5.4: Competition is decided on the basis of W-values. The action

with the highest W-value is executed by the creature.

45

repeat
 explore
until (food found).

then..
 return home.

’Food’

’Hide’

The boxes show which agent was obeyed at each point:

food

nest

food

Figure 5.5: Internal conict, adaptive external behavior: the conict between

the agents `Hide' and `Food' results in an adaptive food-forager. On the left

is the kind of global, serial, control program one would normally associate

with such behavior. On the right, the two competing agents produce the

same e�ect without global control.

46

states x in which
the creature is
carrying food

states x in which
the creature is not
carrying food

state-space

Wf(x)Wh(x)

Wf(x) Wh(x)

Figure 5.6: We expect competition to result in fragmentation of the state-

space among the di�erent agents. In each state x, the `Hide' agent suggests

some action with weightW

h

(x), and the `Food' agent suggests an action with

weight W

f

(x). The grey area is the area where W

h

(x) > W

f

(x). The `Hide'

agent wins all the states in this area. The black area shows the states that

the `Food' agent wins.

47

5.2 W = Drive Strength

Our abstract decentralised model of mind is a form of the drives model

commonly used in ethology (dating back to Hull's work in the 1940s), where

the `drive strength' or `importance variable' [Tyrrell, 1993] is equivalent to

the W-value, and the highest one wins (the exact action of that agent is

executed). Tyrrell's equation [Tyrrell, 1993, x8.1]:

drive_strength

= stimulus_strength

= f(internal, external and indeterminate stimuli)

is equivalent to saying that:

W =W (x)

It is drive strength relative to the other drives that matters rather than

absolute drive strength.

The big question of course is where do these drive strengths or W-values

come from. Do they have to all be designed by hand? Or can they be

somehow learned? Ethologists have lots of ideas for what the weights should

represent, but can't come up with actual algorithms that are guaranteed

to produce these kind of weights automatically. They tend to just leave

it as a problem for evolution, or in our case a designer. See [Tyrrell, 1993,

x4.2,x9.3.1] for the di�cult design problems in actually implementing a drives

model. Tyrrell has the problem of designing sensible drive strengths, relative

drive strengths, and further has to design the appropriate action for each

agent to execute if it wins.

It should be clear by now that we are going to use Reinforcement Learning

to automatically generate these numbers. RL methods, in contrast to many

forms of machine learning, build up value functions for actions. That is,

an agent not only knows `what' it wants to do, it also knows `how much' it

wants to do it. Traditionally, the latter are used to produce the former and

are then ignored, since the agent is assumed to act alone. But the latter

numbers contain useful information - they tell us how much the agent will

su�er if its action is not executed (perhaps not much). They tell us which

actions the agent can compromise on and which it cannot.

Systems that only know `What I want to do' �nd it di�cult to compro-

mise. Reinforcement Learning systems, that know `How much I want to do

it', are all set up for negotiating compromises. In fact, `how much' it wants

48

to take an action is about all the simple Q-learning agent knows - it may not

even be able to explain why it wants to take it.

Our Reinforcement Learning model is also useful because given any state

x at any time a state-space agent can suggest an action a - as opposed to

programmed agents which will demand preconditions and also demand con-

trol for some time until they terminate. State-space agents are completely

interruptable. In the terminology of [Watkins, 1989, x9], the Action Selec-

tion methods I propose in this thesis are supervisory methods, where there

is a continuous stream of commands interrupting each other, rather than

delegatory methods, where a top level sends a command and then is blocked

waiting for some lower level loop to terminate. Watkins argues that the

latter methods characterise machines (or at least, machines as traditionally

conceived) while the former characterise what animals actually do.

Recently there has been an emphasis on autonomous agents as dynamical

systems (e.g. [Steels, 1994]), emphasising the continuous interaction between

the agent and its world such that the two cannot be meaningfully separated.

It is not absolutely clear what the de�ning features of a dynamical system are

(over and above just any self-modifying agent), but complete interruptability

seems to be one part of it.

To formalise, each agent in our system will be a Q-learning agent, with

its own set of Q-values Q

i

(x; a) and more importantly, with its own reward

function. Each agent A

i

will receive rewards r

i

from a personal distribution

P

i

xa

(r). The distribution P

xa

(y) is a property of the world - it is common

across all agents. Each agent A

i

also maintains personal W-values W

i

(x).

Given a state x, agent A

i

suggests an action a

i

according to some control

policy (x2.2.3), which is most likely, as time goes on, to be such that:

Q

i

(x; a

i

) = max

b2A

Q

i

(x; b)

The creature works as follows. Each time step:

observe x

for (all agents):

get suggested action a

i

with strength W

i

(x)

�nd W

k

(x) = max

i21;:::;n

W

i

(x)

execute a

k

observe y

for (all agents):

get reward r

i

possibly update Q

i

possibly update W

i

49

Note that the transition will generate a di�erent reward r

i

for each agent.

For updating Q, we use normal Q-learning. For updating W, we want some-

how to make use of the numerical Q-values. There are a number of possibil-

ities.

5.3 Static W=Q

A static measure of W is one where the agent promotes its action with the

same strength no matter what (if any) its competition. For example:

W

i

(x) = Q

i

(x; a

i

)

This simple method will be the fourth method we test (x9).

5.4 Static W = importance

A more sophisticated static W would represent the di�erence between taking

the action and taking other actions, i.e. how important this state is for the

agent. If the agent does not win the state, some other agent will, and some

other action will be taken. In an unimportant state, we may not mind if we

are not obeyed. The concept of importance is illustrated in Figure 5.7.

For example, W could be the di�erence between a

i

and the worst possible

action:

W

i

(x) = Q

i

(x; a

i

)�min

b2A

Q

i

(x; b)

Or W could be a Boltzmann function:

W

i

(x) =

e

Q

i

(x;a

i

)

T

P

b2A

e

Q

i

(x;b)

T

The idea of this kind of scaling is that what might be a high Q-value in

one agent might not be a high Q-value to another.

5.4.1 Static W=z

A scaled measure of W could be how many standard deviations a

i

's Q-value

is from the mean Q-value. That is, W is the z-score. To be precise, the mean

would be:

50

State

Action
Q(x,a)= 2.50

2.49

2.52

2.49

4.10

4.00

0.10

y x

0.03

0.03

Figure 5.7: The concept of importance. State x is a relatively unimportant

state for the agent (no matter what action is taken, the discounted reward

will be much the same). State y is a relatively important state (the action

taken matters considerably to the discounted reward).

51

M =

1

jAj

X

b2A

Q

i

(x; b)

the standard deviation would be:

�

2

=

1

jAj

X

b2A

(Q

i

(x; b)�M)

2

and this scheme is:

W

i

(x) =

�

0 if the Q-values are all the same

Q

i

(x;a

i

)�M

�

otherwise

If the Q-values are all the same, � = 0 and Q

i

(x; a

i

)�M = 0. Otherwise

� > 0, and remember that a

i

is the best action, so Q

i

(x; a

i

)�M > 0.

But even this measure may still be a rather crude form of competition.

Consider where there are just two actions. Either their Q-values are the same

(W

i

(x) = 0) or else the mean is halfway between them and the larger one

is precisely 1 standard deviation above the mean. So to compete in a state

where we care what happens, we have W

i

(x) = 1 always, independent of the

values of or the gap between the Q-values.

5.5 Dynamic (learnt) W-values

The real problem with a static measure of W is that it fails to take into

account what the other agents are doing. If agent A

i

is not obeyed, the

actions chosen will not be random - they will be actions desirable to other

agents. It will depend on the particular collection what these actions are,

but they may overlap in places with its own suggested actions. If another

agent happens to be promoting the same action as A

i

, then A

i

does not need

to be obeyed. Or more subtly, the other agent might be suggesting an action

which is almost-perfect for A

i

, while if A

i

's exact action succeeded, it would

be disastrous for the other agent, which would �ght it all the way.

We have two types of states that A

i

need not compete for:

Type 1 - A state which is relatively unimportant to it. It doesn't matter

much to A

i

's discounted reward what action is taken here. In particular,

it doesn't matter if some other agent A

k

takes an action instead of it.

52

Type 2 - A state in which it does matter to A

i

what action is taken, but

where some agent A

k

just happens to be suggesting an action which is

good for A

i

. This may or may not be the action A

i

would itself have

suggested.

With dynamic W-values, the agents observe what happened when they

were not obeyed, and then modify their W

i

(x) values based on how bad it

was, so that next time round in state x there may be a di�erent winner.

Imagine W as the physical strength agents transmit their signals with,

each transmission using up a certain amount of energy. It would be more

e�cient for agents to have low W if possible, to only spend energy on the

states that it has to �ght for. The �rst naive idea was if an agent is su�ering

a loss it raises its W-value to try to get obeyed. But this will result in an

\arms race" and all W's gradually going to in�nity. The second naive idea

then was let the agent that is being obeyed decrease its W-value. But then

its W-value will head back down until it is not obeyed any more. There will

be no resolution of competition. W-values will go up and down forever.

Clearly, we want W to head to some stable value. And not just the same

value, such as having all unobeyed agents W ! 1. We want the agents

to not �ght equally for all states. We need something akin to an economy,

where agents have �nite spending power and must choose what to spend it

on. We will have a resource (statespace), agents competing for ownership of

the resource, caring more about some parts than others, and with a limited

ability to get their way.

5.5.1 Dynamic W = D - F

What we really need to express in W is the di�erence between predicted

reward (what is predicted if the agent is obeyed) and actual reward (what

actually happened because we were not obeyed). What happens when we

are not listened to depends on what the other agents are doing.

The predicted reward is D = E(d), the expected value of the reward

distribution. If we are not obeyed we will receive reward f with expected

value F = E(f). We can learn what this loss is by updating:

W 7! D � f

After repeated such updates:

W ! D � F

53

Using a (D � f) algorithm, the agent learns what W is best without

needing to know why. It does not need to know whether it has ended up with

low W because this is Type 1 or because this is Type 2. It just concentrates

on learning the right W.

Consider the case where our Q-learning agents all share the same suite

of actions, so that if another agent is taking action a

k

we have already got

an estimate of the return in F = Q

i

(x; a

k

). Then we can directly assign the

di�erence:

W := D � F

where D = Q

i

(x; a

i

) and F = Q

i

(x; a

k

):

W

i

(x) := Q

i

(x; a

i

)�Q

i

(x; a

k

)

That is:

W

i

(x) := d

ki

(x)

where d

ki

(x) is the deviation (expected di�erence between predicted and

actual) or expected loss that A

k

causes for A

i

if it is obeyed in state x. We

can show the losses that agents will cause to other agents in a n

�

n matrix:

0

B

B

B

B

@

0 d

21

d

31

: : : d

n1

d

12

0 d

32

: : : d

n2

d

13

d

23

0 : : : d

n3

� � �

d

1n

d

2n

d

3n

: : : 0

1

C

C

C

C

A

where all d

ki

� 0. Note that all d

kk

= 0 (the leader itself su�ers an

expected loss of zero).

5.6 A walk through the matrix

Given such a matrix, can we search in some way for the `right' winner?

Consider �rst a situation where those agents not in the lead have to raise

their W-values. If one of them gets a higher W-value than the leader then it

goes into the lead, and so on.

54

Theorem 5.1 Given variables W

1

; : : : ;W

n

, the process:

start with leader k := random column and W

k

:= 0

loop:

for all i other than k

W

i

:= d

ki

W

l

:= highest of these W

i

if W

l

> W

k

, new leader l and goto loop

else terminate with winner k

will terminate within n steps, and we will have found k such that:

d

ki

� W

k

8i

That is, there must exist at least one k such that all the values in the

k'th column are less than or equal to a value in the k'th row.

Proof: The process goes:

random leader W

k

= 0

�rst proper leader W

l

= d

kl

> W

k

that is, 0 < d

kl

new leader W

m

= d

lm

> W

l

that is, 0 < d

kl

< d

lm

new leader W

p

= d

mp

> W

m

that is, 0 < d

kl

< d

lm

< d

mp

� � �

We have a strictly increasing sequence here. Each element is the highest

in its column, so we are using up one column at a time. So the sequence

must terminate within n steps. �

5.6.1 Multiple possible winners

For a given matrix, there may be more than one possible winner. For exam-

ple, consider the matrix:

55

0

@

0 3 0

0 0 9

0 0 0

1

A

Start with allW

i

= 0. Choose at random agent A

2

's action for execution.

Then:

W

1

:= 3

Now agent A

1

is in the lead, and:

3 > 0; 0

Agent A

1

is the winner. However, if we had started by choosing agent

A

3

's action, then:

W

2

:= 9

Now agent A

2

is in the lead, and:

9 > 3; 0

Agent A

2

is the winner. We have a winner when somebody �nds a de-

viation they su�er somewhere that is worse than the deviation they cause

everyone else.

We do not examine all d

ki

combinations and make some kind of global

decision. Rather we `walk' through the matrix and see where we stop. Where

the walk stops may depend on where it starts. Later (x13) we will ask if we

can make a global decision. But �rst we consider where the only possible

strategy is to make a walk.

56

Chapter 6

W-learning (Minimize the

Worst Unhappiness)

We do not assume in general that other agents' actions are meaningful to an

agent. We do not assume that we have a handy estimate of Q

i

(x; a

k

). If we

don't, then all we can do is observe what happened when we were not obeyed

and the unrecognised action was taken. We can observe the r

i

and y it led

to, and so build up a substitute for Q

i

(x; a

k

).

Now there might be many di�erent unrecognised actions being taken by

the leaders of di�erent states. Rather than adding them all to our action set

and learning a huge Q

i

(x; a) for every new action for every state, we only

learn the minimum that we actually need to compete. In each state x, we

simply learn how bad it is not to be obeyed in this state. We learn W

i

(x),

which will require less memory than learning Q

i

(x; a) for more than one new

action. A change of leader in the state does not give us a new Q

i

(x; a)

quantity to learn (i.e. we have to expand our memory dynamically). Instead

we just change the quantity of the single W-value for the state.

Another complication avoided by this strategy is that the leading agent

may be executing a confusing, non-deterministic policy from our viewpoint,

perhaps because it perceives a di�erent state to the state that we perceive.

In this case, we could not �nd a single �xed action a

k

with which to learn

Q

i

(x; a

k

). Instead we would have to learn Q

i

(x; k), where action k means

\do whatever agent A

k

would do now". We will look more closely in x6.6 at

the confusion caused by agents perceiving di�erent subspaces. For now we

assume that all agents build up W-values for the full state x. But note in

passing that the W-value again avoids such complication by its strategy of

simply building up an averaged estimate of how bad it is not to be obeyed.

We will need more than one sample to build up a proper estimate. W-

learning (introduced in [Humphrys, 1995]) is a way of building up such an

57

estimate when agents do not share the same suite of actions. When agent

A

k

is the winner and has its action executed, all agents A

i

except A

k

update:

W

i

(x) 7! (Q

i

(x; a

i

)� (r

i

+ max

b2A

Q

i

(y; b)))

for i 6= k, but note that the reward r

i

and next state y were caused by A

k

rather than by agent A

i

itself. The reason why we do not update W

k

(x) is

explained later (x6.3). When we see a di�erence term between predicted and

actual, we expect that this `error term' will go to zero, but note that here it

goes to a positive number.

For example, in the discrete case of W-learning, where we store each

W

i

(x) explicitly in lookup tables, we update:

W

i

(x) := (1� �)W

i

(x) + �(Q

i

(x; a

i

)� (r

i

+ max

b2A

Q

i

(y; b)))

where � takes successive values 1;

1

2

;

1

3

; : : :. Since the rewards and Q-values

are bounded, it follows that the W-values are bounded (Theorem B.3).

Using such a measure of W, an agent will not need explicit knowledge

about who it is competing with. Similar to how Q-learning works, a W-

learning agent need only have local knowledge - what state x we were in,

what action a it suggested, whether it was obeyed or not, what state y we

went to, and what reward r that gave it. It will be aware of its competition

only indirectly, by the interference they cause. It will be aware of them when

they stop its action being obeyed, and will be aware of the y and r caused

as a result. The agent will learn W by experience - by actually experiencing

what the other agents want to do.

In fact, I considered not even telling the agent whether it was obeyed,

but it seems there is no satisfactory way of doing this. x6.3 shows that the

obeyed agent must be treated di�erently from the unobeyed.

In pseudocode, the W-learning method is, every time step:

observe state x

find Wk(x) = highest Wi(x)

execute ak

for all agents i other than k

Wi(x) -> (Qi(x,ai) - reward for Ai)

The change of W's mean that next time round in state x there may be a

di�erent winner, and so on. Note that by reward for Ai we really mean

the combination of immediate reward and next state.

58

6.1 Comparison of Q-learning andW-learning

The important thing to remember in comparing Q-learning and W-learning

is that they are solving di�erent problems. Q-learning is solving the RL

problem (choosing the action in pursuit of one goal). W-learning is solving

the Action Selection problem (choosing the agent in timeslicing of multiple

goals).

W-learning is not another method of RL. It is not a competitor of Q-

learning.

Consider Q-learning as the process:

D 7! d

where we are learning D, and d is caused by the execution of our action.

Then W-learning is:

W 7! (D � f)

where D is already learnt, and f is caused by the execution of another

agent's action. In the discrete case, Q-learning would be:

D := (1� �)D + �d

and W-learning would be:

W := (1� �)W + �(D � f)

this is confusing because it looks like a standard way [Sutton, 1988] of

writing the Q-learning update:

D := D + �(d�D)

where the expected value of the error term (d � D) goes to zero as we

learn. But this is not the same error term as in W-learning:

W :=W + �((D � f)�W)

6.2 Progress of competition

In general, we assume that Q is learnt before W. Either we delay the learning

of W (see [Humphrys, 1995, x3.1]) or, alternatively, imagine a dynamically

59

changing collection with agents being continually created and destroyed over

time, and the surviving agents adjusting their W-values as the nature of

their competition changes. Q is only learnt once, right from the start of the

life of the agent, whereas W is relearnt again and again. The skill that A

i

learns, expressed in its converged Q-values, remains intact through subse-

quent competitions for x. Once it learns its action a

�

i

(x) it will promote it

in all competitions, only varying the strength with which it is promoted, as

its competition varies (this is why we only need to keep W

i

(x) values, not

W

i

(x; a) values). In the long term, the single-step update for A

i

is approxi-

mated by:

W

i

(x) 7! (V

�

i

(x)� (r

i

+ V

�

i

(y)))

where r

i

and y are caused by the leader A

k

. Note that even though A

k

keeps suggesting the same action, we have probabilistic transitions so r

i

and

y are not constant but are random variables. We can write this as:

W

i

(x) 7! d

ki

(x)

where the deviation d

ki

(x) (the loss that A

k

causes for A

i

by being obeyed

in state x) is now not a �xed quantity as in x5.5.1 but a random variable.

The function V

�

i

is �xed, so any variation in d

ki

(x) is caused only by the

variation in r

i

and y, which is caused by the variation in P

i

xa

(r) and P

xa

(y)

(where a = a

�

k

(x)). We already know that P

xa

(y) is a stationary distribution.

We will assume that, even though A

k

's action a is unrecognised by A

i

, we still

have some stationary distribution P

i

xa

(r). If so, then d

ki

(x) will be stationary,

with expected value:

E(d

ki

(x)) = V

�

i

(x)� (E(r

i

) + E(V

�

i

(y)))

= V

�

i

(x)�

�

P

r

rP

i

xa

(r) +

P

y

V

�

i

(y)P

xa

(y)

�

We expect:

E(d

kk

(x)) = 0

though we do not actually update W

k

(x), and we expect for i 6= k:

E(d

ki

(x)) � 0

60

That is, if obeyed, we expect f = D. If not obeyed, we expect f � D.

1

We cannot calculate E(d

ki

(x)) analytically unless we know P

i

xa

(r) and

P

xa

(y). So instead, as in Q-learning, we calculate it by sampling it. If A

k

leads forever in state x, then by Theorem A.1:

W

i

(x) ! E(d

ki

(x))

� 0

This convergence will be interrupted if some new agent takes the lead.

W

i

(x) itself might increase so thatW

i

(x) > W

k

(x) and A

i

then takes the lead

in state x. If it does, W-learning stops for it until (if ever) it loses the lead.

If another agent A

l

takes the lead by building up a high W

l

(x), then A

i

will

suddenly be taking samples from the distribution d

li

(x). By Theorem A.2,

if we update forever from this point, W

i

(x) converges to the expected value

of the new distribution:

W

i

(x)! E(d

li

(x))

and so on.

6.2.1 Convergence

W-learning is an approximation of the walk through the matrix that we saw

in x5.6. Instead of direct assignments to the expected loss, we have to take

samples of the distribution of losses.

W-learning does this walk because we cannot exhaustively search all com-

binations k; i to �nd the highest E(d

ki

(x)) in the matrix (or whatever we

decide would be the fairest winner). It would be impractical to let every

agent experience what it is like with every other agent in the lead for long

enough to build up an expected value for each one. And it would also re-

quire memory to build up a map of the matrix and return to a past leader.

W-learning tries to get down to a winner quicker than that. We just put

someone into the lead, and it's up to the others to raise their W-values to

pass it out. Anyone who can manage a higher W-value is allowed overtake.

1

Actually, although A

i

has learnt the optimal action given its statespace, action set

and reward distribution, an agent A

k

that is connected to di�erent senses or actions of

the body may suggest things that are actually better for A

i

, things that A

i

is not able to

learn itself because it is denied access to some senses or actions. In such a case it would

positively pay A

i

not to be obeyed (we will show such a case in x7.1.1 later). Our model

can actually cope with this - A

i

will simply develop negative W-values and not compete.

We will return to this whole issue in x18. For the moment we will assume that agents

know best what is good for themselves, that is, that they will su�er � 0 if not obeyed.

61

Just as in Q-learning - where we don't actually have to wait for an in�nite

time for it to be useful, it will �xate on one or two actions fairly quickly -

so in W-learning we don't actually require Q-learning to have converged and

we don't have to wait to get to the expected value of d

ki

(x) for there to be

a switch of leader. W-learning rapidly gets down to a competition involving

only one or two agents. The switches of leader trail o� fairly quickly as W

rises.

In each state x, competition will be resolved when some agent A

k

, as a

result of the deviations it su�ers in the earlier stages of W-learning, accumu-

lates a high enough W-value W

k

(x) such that:

8i; i 6= k; W

i

(x)! E(d

ki

(x)) < W

k

(x)

As in the walk, the reason why the competition converges is that for the

leader to keep changing, W must keep rising. While there may be statistical

variations

2

of d

ki

(x) in any �nite sample, in the long run the expected values

E(d

ki

(x)) must emerge, and the walk of x5.6 will take place.

A

k

wins because it has su�ered a greater deviation in the past than any

expected deviation it is now causing for the other agents. The agent that

wins is the agent that would su�er the most if it did not win. Think of it as

perhaps many agents `wanting' the state, but A

k

wanting it the most. Since

all E(d

ki

(x)) � 0, we normally expect W

k

(x) � 0 for it to win. W-learning

resolves competition without resorting to devices such as killing o� agents

that are disobeyed for time t, without anyW !1, and in fact with normally

most W �W

max

.

There will be a di�erent competition in each state x, each being resolved

at di�erent times. Eventually, the entire statespace will have been divided

up among the agents, with a winner for each state x.

6.3 Scoring W

k

(x)

So why don't we update the leader's W-value as well? The answer is that if

we do, we would be updating:

W

k

(x) ! E(d

kk

(x))

= 0

2

For example, the one that takes the lead may not actually be the one with the worst

expected loss. This is what I allowed for in [Humphrys, 1995, x4], where the longer walk

will terminate within n

2

steps. In fact, the one that takes the lead mightn't even have an

expected loss worse than W

k

(x), it might just be an unlucky sample (see x6.5).

62

The leader's W is converging to zero, while the other agents' W's are

converging to E(d

ki

(x)) � 0. They are guaranteed to catch up with it. We

might think it would be nice to try and reduce all weights to the minimum

possible, so as soon as you are obeyed, you start reducing your weight. But

you can only �nd the minimum by reducing so far that someone else takes

over. As soon as an agent gets into the lead, its W-value would start dropping

until it loses the lead. We will have back and forth competition forever under

any such system, whereas we want someone to actually win the state.

If we do for all i including k:

W :=W + (D � f)

then W

k

stays the same, while (unless they are su�ering zero) the other

W

i

!1 and overtake it. If we do for all i including k:

W 7! (D � f)

then W

k

! 0, while (unless they are su�ering zero) the other W

i

! some

quantity > 0 and overtake it. So we can't have the same rule for the leader

as for the others. The leader does nothing - it's up to the others to catch up

with it. If they can't, we have a resolved competition.

6.4 Strict highest W

Not scoring the leader W

k

(x) leads to a potential problem however. If W

k

(x)

somehow gets set to an unfairly large value, then it will never get corrected,

since the other agents will be unable to catch up to it.

This can happen if it gets initialised randomly to some large value. Note

that W

min

< 0 < W

max

(Theorem B.3). Any W-value � 0 will eventually be

challenged since we expect E(d

ki

(x)) � 0. However, a W-value in the range

0 < W � W

max

may never be challenged.

The solution is that we initialise all W

i

(x) to be in the range W

min

�

W � 0. They can be random within that range since (1 � �) will wipe out

the initial value in the �rst update.

6.5 Stochastic highest W

But an unfairly high W

k

(x) can also happen because of unlucky samples.

Say one time A

k

wasn't in the lead in state x, and it experienced:

63

W

k

(x) 7! d

jk

(x)

where d

jk

(x) � E(d

jk

(x)) is a sample from the very high end of the

distribution with expected value E(d

jk

(x)). A

k

normally won't su�er this

when A

j

is in the lead, but this single unlucky update puts A

k

into the lead

and its W-value is never challenged after that. The other W's all converge to

their expected values E(d

ki

(x)), but W

k

(x) does not converge to anything.

It remains representing this single unlucky sample.

The solution is still not to score the leader's W-value, at least not while it

is in the lead. Rather, we make sure that its W-value is updated a few times

before it can take the lead forever. It can't win based on just one sample.

The solution is to pick the highest W with a Boltzmann distribution that

starts at a moderately high temperature (pick a stochastic winner centred

on the highest W) and declines over time. We still only score the ones that

aren't obeyed. We reduce the temperature until we end up with one winner,

the others converging to the deviation it causes them. Again, as in x2.2.3,

we aim to have the �nished creature end up with just a low temperature

Boltzmann rather than brittle strict-determinism.

To be precise, when we observe state x, we obey agent A

k

with probability:

p(k) =

e

W

k

(x)

T

P

i

e

W

i

(x)

T

Note that

P

i

p(i) = 1. The advantage of this is that if we start with a

high temperature (pick random winners), it allows W-values to start totally

random. We don't need an initialisation strategy any more.

6.6 W-learning with subspaces

The analysis in x6.2 showed that if agent A

k

leads in state x, then:

W

i

(x)! E(d

ki

(x))

But this assumes that the x in W

i

(x) refers to the full state. What if our

agents, which are already only learning Q-values in subspaces (x4.4.1) were

to only build up their W-values in subspaces too?

The problem with this is that there may be many di�erent leaders for

the many di�erent full states which A

i

sees as all the one state. And even if

64

there was just one leader, what A

i

sees as one state is seen by the leader as

a number of di�erent states so it will be executing di�erent actions, causing

quite di�erent deviations for A

i

. From A

i

's point of view, sometimes the

leader A

k

executes a good action, sometimes a bad one, for no apparent

reason. But instead of this simply being samples from di�erent ends of a

distribution, we are actually taking samples from di�erent distributions. In

short, we are not repeatedly updating:

W

i

(x) 7! d

ki

(x)

for a single distribution d

ki

(x) with expected value E(d

ki

(x)). Rather we

are updating:

W

i

(x) 7! d

(j)

for many di�erent distributions d

(j)

, representing di�erent k's and di�er-

ent x's. By Theorem A.4:

W

i

(x)!

X

j

p(j)E(d

(j)

)

where p(j) is the probability of taking a sample from d

(j)

.

3

So we coalesce

the expected values of multiple distributions into one W-value. This is a

weighted mean (see xE) since

P

j

p(j) = 1.

It is a rather crude form of competition. While Q-learning with subspaces

is just as good for learning the policy as Q-learning with full space, W-

learning with subspaces might not be as `intelligent' a form of competition

as W-learning with full space. The agent doesn't need the full space to learn

its own policy, but it may need it to talk to other agents.

We will return to this in x10. For now, we use both Q-learning and W-

learning with subspaces for the sake of the tiny memory requirements this

method will have. A

i

's W-value is a weighted mean of all the separate W-

values that it would have if it was able to distinguish the states. While all

these W-values have been compressed into one W-value, it is done fairly. The

more likely it is to experience a deviation d

(j)

, the more biased W

i

(x) will be

in the direction of E(d

(j)

).

3

Assuming this probability is stationary. What we are talking about here is, given that

the agent observes a certain subspace state, what is the probability that this is really a

certain full space state?

65

O

I2

I1

Figure 6.1: Agents may compete with each other despite sharing no common

sensors. The abstract `full' state here is x = (I

1

; I

2

), though nothing in the

creature works with this full state.

6.6.1 Agents with heterogenous sensory worlds

With W-learning with subspaces, we can add new sensors dynamically, with

new agents to make use of them, and the already-existing agents will just

react to it as more competition, of the strange sort where sometimes in the

same state (as they see it) they are opposed and sometimes not (Figure 6.1).

Recall the `map' of the statespace that we suggested drawing in x5, show-

ing who wins each state. When agents work in subspaces only, the creature

as a whole can still draw up a map of the full state-space. A W-value built

up by an agent in a sub-state will typically be enough to win only some of

the full states that the sub-state maps to, and lose others. The agent itself

could not draw up a map of its statespace, since it could not classify its x as

either `won' or `lost'.

Note how concepts are becoming distributed in this model. For example,

in our House Robot problem, there is now no central Perception area where

the concepts of both `dirt' and `smoke' coexist. One agent solves the per-

ception problem of distinguishing dirt from non-dirt. Another agent solves

the di�erent problem of separating smoke from non-smoke. Each solves the

problem of vision to the level of sophistication necessary for its own purposes

- nobody directly solves the problem of separating dirt from smoke. Agents

existing in di�erent sensory worlds are competing against each other.

Hierarchical Q-learning with subspaces looks like this too except that the

switch must know about the full state-space.

66

Chapter 7

W-learning with subspaces

(preliminary test in Ant World)

Before we test W-learning in the House Robot problem, we �rst look at an

implementation of it in a simpler problem. The reason we do this is because

we want to draw a map of the full statespace, showing who wins each state.

In the House Robot problem, the full statespace is too big to explicitly map.

It is too big even to illustrate interesting subspaces. In this simpler problem,

the full space is small enough to map.

The Ant World problem is the conict between seeking food and avoiding

moving predators on a simple toroidal gridworld (Figure 7.1). The world

contains a nest, a number of stationary, randomly-distributed pieces of food,

and a number of randomly-moving dumb predators. Each timestep, the

creature can move one square or stay still. When it �nds food, it picks it up.

It can only carry one piece of food at a time, and it can only drop it at the

nest. The task for the creature is to forage food (i.e. �nd it, and bring it

back to the nest) while avoiding the predators.

1

This is clearly the ancestor of the House Robot problem. The food/predators

problem can be translated directly to the vacuuming/security problem - food

becomes dirt, the nest becomes the plug, and the moving predators to avoid

become moving family to avoid. Unlike in the House Robot problem, here

the world is a proper torus, so the creature can always run away from the

predator - it cannot get stuck in corners. The creature senses x = (i; n; f; p)

1

Problem Details - For these results (from [Humphrys, 1995]), when a piece of

food is picked up its square becomes blank. The creature makes repeated short runs of

length 50 timesteps each. Each run starts with the creature, NOPREDATORS predators

and NOFOOD new pieces of food placed randomly. Ideally the creature should manage to

collect all NOFOOD pieces (so that the grid is empty) before the run ends. We have a SIZE

x SIZE grid. For these results we had SIZE=10, NOPREDATORS=1 and NOFOOD=4.

67

Figure 7.1: The Ant World problem. N is the nest.

68

where:

� i is whether the creature is carrying food or not, and takes values 0

(not carrying) and 1 (carrying).

� n (0-8) is the direction (but not distance) of the nest as before in

Figure 4.2. Here the direction of the nest is known from any distance.

� f (0-9) is the direction of the nearest visible food. Unlike the nest, food

and predators are only visible within a small radius.

� p (0-9) is the direction of the nearest visible predator.

As before, the creature takes actions a, which take values 0-7 (move in

that direction) and 8 (stay still).

7.1 Analysis of best food-�nding solution

We searched for a good food-�nding solution and a good predator-avoiding

solution. See [Humphrys, 1995] for the details of what exactly our search

was. The important thing here is just to show how agents can successfully

interact via W-learning. The best food-�nding solution was this collection of

agents:

A

f

senses: (i,f)

reward: if (picked up food) 1.62 else 0

A

n

senses: (n)

reward: if (arrived at nest) 0.15 else 0

A

p

senses: (p)

reward: if (just shook o� predator) 0.17 else 0

This is the collection called EVO1 in [Humphrys, 1995], rewritten to take

advantage of the fact that an agent with reward function if (condition)

r else s is interchangeable with one with reward function if (condition)

(r-s) else 0, in the sense that both its policy and its W-values will be the

same (see xC.3).

Looking at who wins each state, A

f

wins almost the entire space where

i = 0 (not carrying). In the space where i = 1 (carrying), A

n

wins if p = 9 (no

predator visible). Where a predator is visible, A

n

wins if the nest direction

is along a diagonal (0,2,4,6), otherwise the space is split between A

n

and A

p

.

69

For example, here are the owners of the area of statespace where p =

7. The agents A

f

; A

n

; A

p

are represented by the symbols o, NEST, pred

respectively. States which have not (yet) been visited are marked with a

dotted line:

---- p=7: ----

i=0:

f=0 o o o o o o o o o

f=1 o o o o o o o o o

f=2 o o o o o o o o o

f=3 o o o o o o o o o

f=4 o o o o o o o o o

f=5 o o o o o o o o o

f=6 o o o o o o o o o

f=7 o o o o o o o o o

f=8 --

f=9 o o NEST o NEST o o o o

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

i=1:

f=0 NEST pred NEST pred NEST NEST NEST NEST --------

f=1 NEST NEST NEST pred NEST pred NEST NEST --------

f=2 pred NEST NEST pred NEST pred NEST pred --------

f=3 NEST pred NEST NEST NEST pred NEST pred --------

f=4 NEST pred NEST NEST NEST NEST NEST pred --------

f=5 NEST pred NEST pred NEST pred NEST NEST --------

f=6 NEST pred NEST NEST NEST pred NEST pred --------

f=7 NEST pred NEST pred NEST pred NEST NEST --------

f=8 NEST NEST NEST pred NEST pred NEST NEST --------

f=9 NEST o NEST NEST NEST pred NEST NEST --------

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

The di�erence between diagonals and non-diagonals was an unexpected

result. On analysis, it turned out that it was caused by the way in which

compass directions were assigned. There are 4 diagonal directions and 4

non-diagonal directions. Anything which doesn't lie directly on one of the

8 primary or secondary directions is assigned to the nearest non-diagonal

direction. So the non-diagonal directions gathered up all the messy angles

while if you sensed something on a diagonal direction you knew exactly where

it was. If the nest is sensed in a diagonal direction, then moving that way

is guaranteed to hit it without a change of direction. If the nest is in a non-

diagonal direction, then the creature may have to make a change of direction

as it moves towards it.

2

2

For the House Robot problem, I changed this to use the nearest direction to the precise

angle, so there was no bias between diagonals and non-diagonals.

70

A

n

is more con�dent that it will get its reward when it sees the nest along

a diagonal and moves along that diagonal, and it builds up higher W-values

accordingly, causing it to win these states from A

p

. This is certainly a more

subtle way for the agents to give way to each other than a programmer would

normally think of.

Drawing the complete map of the full statespace shows that A

f

wins

49.27% of the states, A

n

wins 34.97% and A

p

wins 15.75%.

Here are all the W-values of all the agents, sorted to show who beats

who. The W-valuesW

f

(i; f);W

n

(n);W

p

(p) are represented by food.W(i,f),

nest.W(n), predator.W(p) respectively:

food.W(0,0) 0.195

food.W(0,1) 0.183

food.W(0,7) 0.144

food.W(0,5) 0.114

food.W(0,2) 0.097

food.W(0,6) 0.094

food.W(0,3) 0.089

food.W(0,9) 0.087

food.W(0,4) 0.084

nest.W(6) 0.083

nest.W(2) 0.074

nest.W(4) 0.058

nest.W(0) 0.041

predator.W(1) 0.037

predator.W(0) 0.021

predator.W(2) 0.018

predator.W(3) 0.016

nest.W(8) 0.016

predator.W(7) 0.013

nest.W(7) 0.012

predator.W(5) 0.011

nest.W(1) 0.006

predator.W(4) 0.004

predator.W(6) 0.001

nest.W(3) 0.001

food.W(0,8) 0.000 (never visited)

nest.W(5) -0.000

predator.W(8) -0.003

predator.W(9) -0.008

food.W(1,9) -0.008

food.W(1,6) -0.026

food.W(1,1) -0.027

food.W(1,3) -0.031

food.W(1,5) -0.032

food.W(1,2) -0.033

71

Figure 7.2: When the visible squares are simply the adjacent ones, a diagonal

move reveals new squares along two sides of the box, whereas a non-diagonal

move reveals new squares on one side only. A diagonal move is the better

search strategy.

food.W(1,7) -0.036

food.W(1,0) -0.036

food.W(1,4) -0.045

food.W(1,8) -0.098

The next level of analysis is what actions the creature actually ends up

executing as a result of this resolution of competition. When not carrying

food, A

f

is in charge, and it causes the creature to wander, and then head

for food when visible. A

n

is constantly suggesting that the creature return

to the nest, but its W-values are too weak. Then, as soon as i = 1, A

f

's W-

values drop below zero, and A

n

�nds itself in charge. As soon as it succeeds

in taking the creature back to the nest, i = 0 and A

f

immediately takes over

again. In this way the two agents combine to forage food, even though both

are pursuing their own agendas.

EVO1 is a good forager partly because A

f

turns out to have discovered a

trick in searching for food. In [Humphrys, 1995], I hand-coded a creature for

the Ant World (similar to the hand-coded program for the House Robot that

we saw above in x4.3.3). When the creature couldn't see food, my hand-coded

program just adopted the strategy of making a random move 0-7. One might

think that there is no better memoryless strategy for searching. In fact, there

is. At any point, a diagonal move (of distance

p

2) reveals on average slightly

more new squares than a non-diagonal move (of distance 1). One can see this

easiest when the visible squares are simply the adjacent ones (Figure 7.2) but

it also holds true for the distance-based �eld of vision we used in the Ant

World.

So moving around diagonally is a better search strategy. A

f

gradually

builds up higher Q-values along the diagonals (0,2,4,6), discovering something

that might have easily escaped the programmer:

72

(a) (0) (1) (2) (3) (4)

Qf((0,9),a) [0.724] 0.703 0.709 0.694 0.689

(a) (5) (6) (7) (8)

Qf((0,9),a) 0.697 0.707 0.701 <0.680>

7.1.1 Negative W-values

The �nal level of analysis is why the W-values turn out the way they do. We

can see, for example, that when i = 1 (carrying food), A

f

is a long way o�

from getting a reward, since it has to lose the food at the nest �rst. And it

cannot learn how to do this since (n) is not in its statespace. A

f

ends up

in a state of dependence on A

n

, which actually knows better than A

f

the

action that is best for it. In the notation of x5.5.1, A

f

regularly experiences

D < f , and as a result the values W

f

(1; �) here are all negative. One can see

negative W-values for the following reasons:

� The agent, as here, does not sense some information that would be

useful to it. Or it may not have the full suite of actions that it needs.

Another agent keeps doing things that help this agent, but this agent

can't learn how to do them itself. It keeps getting negative W updates.

W can be persistently negative.

� The world is not an MDP. If the world is not an MDP (recall x4.2),

then the agent may not be able to learn the optimal Q

�

policy for its

own reward function. This is similar to the �rst point, since the agent

probably needs more senses. W can be persistently negative.

� We have only taken a �nite number of samples. Say we have Q

�

i

(x; a

k

)

only slightly less than Q

�

i

(x; a

i

). We have only taken a small �nite

number of samples, which just happen to be from the high end of the

distribution > Q

�

i

(x; a

i

). After �nite time, W is negative. After in�nite

time, it will end up positive.

So why not get rid of A

n

altogether and simply supply A

f

with the space

x = (i; n; f)? Because it is more e�cient if we can use two agents with

statespaces of size 20 and 9 respectively (total memory required = 29) instead

of one with a statespace of size 180 (total memory required = 180). Obviously

this only really becomes important as these numbers get larger. As we scale

up, addition (multiple agents with subspaces) is preferable to multiplication

(one agent with full space).

73

7.2 Analysis of best predator-avoiding solu-

tion

Here is the predator-avoiding solution:

A

f

senses: (i,f)

reward: if (picked up food) 1.65 else 0

A

n

senses: (n)

reward: if (arrived at nest) 0.19 else 0

A

p

senses: (p)

reward: if (just shook o� predator) 1.23 else 0

This is the collection EVO2 in [Humphrys, 1995]. The predator-sensing

agent is much stronger, and the contrast in behavior is dramatic. Here is

that same area of statespace:

---- p=7: ----

i=0:

f=0 o o pred o o o o o o

f=1 pred pred o pred pred pred pred pred pred

f=2 pred pred pred pred pred o pred pred pred

f=3 pred pred pred o pred pred pred o pred

f=4 o o o o o o pred o o

f=5 pred o o pred pred pred pred pred o

f=6 o o o o o o o o o

f=7 pred o o o o pred o o o

f=8 --

f=9 pred pred pred pred pred pred pred pred pred

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

i=1:

f=0 pred pred pred pred pred pred pred pred --------

f=1 pred pred pred pred pred pred pred pred --------

f=2 pred pred pred pred pred pred pred pred --------

f=3 pred pred pred pred pred pred pred pred --------

f=4 pred pred pred pred pred pred pred pred --------

f=5 pred pred pred pred pred pred pred pred --------

f=6 pred pred pred pred pred pred pred pred --------

f=7 pred pred pred pred pred pred pred pred --------

f=8 pred pred pred pred pred pred pred pred --------

f=9 pred pred pred pred pred pred pred pred --------

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

A

p

mainly dominates when a predator is visible in directions 0-7. In

particular, in that space A

f

loses the crucial state (0; 9) (not carrying food

74

and no food visible). In the special case p = 8, all directions are equal as far

as A

p

is concerned, and A

f

and A

n

are allowed compete to take the action.

When p = 9, A

f

and A

n

�ght it out as if A

p

wasn't there. They end up

combining to forage.

A

f

's share of the statespace has dropped to 35.22%, A

n

's has dropped to

15.78% and A

p

's has risen to 49.01%. Percentage of statespace owned is of

course only a very rough measure of the inuence of the agent on the behavior

of the creature - ownership of a few key states may make more di�erence

than ownership of many rarely-visited states. Also, we must remember that

ownership of a state does not imply that the agent had to �ght other agents

for it. A weak agent may be allowed to own lots of states, but only because

they happen to coincide with what the dominant agent wants. The ownership

of all these states by the weak agent masks the fact that the dominant agent

really owns the entire statespace.

Here are all the W-values:

food.W(0,4) 0.201

food.W(0,6) 0.166

food.W(0,0) 0.164

predator.W(4) 0.162

predator.W(5) 0.160

food.W(0,7) 0.153

predator.W(7) 0.149

food.W(0,5) 0.149

food.W(0,1) 0.146

food.W(0,2) 0.143

predator.W(1) 0.140

food.W(0,3) 0.133

predator.W(0) 0.132

predator.W(3) 0.127

predator.W(6) 0.103

nest.W(2) 0.099

nest.W(0) 0.094

nest.W(4) 0.079

nest.W(6) 0.068

food.W(0,9) 0.049

nest.W(8) 0.045

nest.W(1) 0.035

nest.W(7) 0.029

food.W(1,7) 0.025

nest.W(5) 0.023

nest.W(3) 0.019

predator.W(2) 0.002

food.W(1,5) 0.001

food.W(0,8) 0.000 (never visited)

75

food.W(1,9) -0.007

predator.W(9) -0.015

predator.W(8) -0.015

food.W(1,1) -0.020

food.W(1,3) -0.037

food.W(1,4) -0.051

food.W(1,0) -0.052

food.W(1,2) -0.066

food.W(1,6) -0.082

food.W(1,8) -0.096

7.3 MPEG Movie demo of basic W-learning

An MPEG Movie demo of a W-learning forager in the Ant World

3

can be

viewed at the web page:

http://www.cl.cam.ac.uk/~mh10006/w.html

The MPEG Movie demo is actually of the best forager found in the Sys-

tematic search section (x4.2) of [Humphrys, 1995a]. The following graphics

are screen shots of the web page. The text is worth reading here - though

obviously the accompanying movies can't be played until one goes to the web

page.

4

7.3.1 Rewarding on transitions or continuously

In x2.1.3 we contrasted rewarding on transitions from x to y with just reward-

ing for being in state y. Note (see the text of the web page) how rewarding on

transitions makes A

n

happier to cooperate with the other agents. It does not

resist leaving the nest since it only gets rewards for the moment of arrival.

3

Problem Details - For the MPEG Movie experiment (from [Humphrys, 1995a]),

when a piece of food is picked up another one grows in a random location. So at all times

there are fully NOFOOD pieces on the grid. There is no such thing as `runs' - instead the

world can run continuously for thousands of steps. Here SIZE=10, NOPREDATORS=1

and NOFOOD=5. Also, the nest is now only visible within a small radius (n takes values

0-9).

4

Actually, the movies are also on a `video appendix' that is deposited with this disser-

tation in Cambridge University Library. This VHS video tape plays 4 MPEG Movies in

sequence. First, the creature under the control of agent A

f

alone. Then A

n

alone. Then

A

p

alone. Then all 3 competing together in the same body.

76

If we rewarded it continually for being in the nest, it would resist leaving.

Similarly, A

f

does not resist being taken back to the nest and losing food,

since it only gets rewards at the moment of picking up food. If we rewarded

it continuously for having food, it would resist going anywhere (that is, it

would try to stay still).

In general, if an agent is rewarded only for arriving at a place, once it

gets there it won't stay still, but will go the minimum distance away from it

and then come back so it can get the reward again. If the agent is rewarded

just for being in the place, when it arrives it will stay still.

In this thesis, I leave construction of these reward functions as a design

problem. Rewarding on transitions was an easy way to think about the Ant

World problem, with agents `not caring' at di�erent points, but we probably

could have found a solution as well even if we rewarded continuously.

77

78

79

Chapter 8

W-learning with subspaces

(test in House Robot)

Now we return to the House Robot problem to test W-learning. There being

no global (x; i) statespace to worry about, we can expand the number of

agents. To the previous �ve (x4.4), we add three more agents. The collection

of agents is as follows:

A

d

senses: (d,i)

reward: if (picked up dirt) r

d

else 0

A

p

senses: (p)

reward: if (arrived at plug) r

p

else 0

A

c

senses: (w)

reward: if (lost sight of wall) r

c

else 0

A

w

senses: (w)

reward: if (wall same dir as last time) r

w

else 0

A

u

senses: (h,c)

reward: if (made ID) r

u

else 0

A

s

senses: (h,c)

reward: if (ID=stranger and visible) r

s

else 0

A

m

senses: (h,c)

reward: if (ID=family and here) 0 else r

m

A

f

senses: (f,w

f

)

reward: if (put out �re) r

f

else 0

Rewards are in the range 0 < r � 1. Both the Q

i

(x; a) values and W

i

(x)

values refer to x in the subspaces, for which lookup tables can be used.

A

c

should head for the centre of an open area while A

w

should engage in

wall-following. In fact, as we shall see, A

w

turned out to be useless since its

preferred action of course is to stay still. Perhaps its reward should just have

been if (wall visible) ..

80

We can add more agents than probably needed - if they're not useful they

just won't win any W-competitions and won't be expressed. In Hierarchical

Q-learning, you can add extra agents that aren't chosen by the switch but

you pay the price of a larger (x; i) statespace.

8.1 Searching for well-balanced collections

8.1.1 Making agents weaker or stronger

Since the exact values of these rewards r

i

> 0 don't matter for the policy

learned by Q-learning, why do we not set them all to 1 as we did before in

x4.4?

The answer is that the size of the rewards a�ect the size of the W-values.

Theorem C.2 shows that if we have an agent of the form:

A

i

reward: if (good event) r else s

then A

i

will present W-values:

W

i

(x) = c

ki

(x)(r � s)

where c

ki

(x) is a constant independent of the particular rewards. W is

simply proportional to the subtraction (r�s), so in particular we lose nothing

by �xing s = 0 here and just looking at di�erent values of r.

1

Then we have

simply:

W

i

(x) = c

ki

(x)r

i

Increasing the size of r

i

will cause A

i

to have the same policy (the same

disagreements with the other agents about what action to take), but higher

W-values (an increased ability to compete). r

i

is the parameter by which

we make agents with the same logic stronger or weaker within the creature

as a whole. We do not want all agents to be of equal importance within

the creature. Rather, adaptive collections are likely to involve well-chosen

combinations of weak and strong agents. For instance, a creature containing

a strong version of the predator-avoiding agent: (if predator visible r = �10

else r = 0) will behave di�erently from one containing a weak version of the

same thing: (if predator visible r = �0:1 else r = 0). The predator-avoiding

1

This is something I neglected to exploit in [Humphrys, 1995, x5.4], where I used 2-

reward functions with 2 non-zero rewards and needlessly evolved both rewards.

81

agent in both will be suggesting the same actions, but in the former creature

it is more likely to actually win its competitions.

The set of agents above de�ne a vast range of creature behaviors, depend-

ing on how strong each agent is. For example, if r

w

= 1 and all other rewards

are 0.001, then A

w

will beat all other agents in competition since its absolute

(D�f) di�erences will be so large compared to theirs. In almost all states x

it will build up a higher W-value W

w

(x) than any of the competitor W

i

(x)'s.

The house robot will be completely dominated by A

w

, and will spend all

its time wall-following - in fact, spend all its time stationary, with a wall in

sight, since that is A

w

's preferred position.

In conclusion, the kind of scaling we suggested in x5.4 is not of any use to

us. We're quite happy to have unequal agents, to use the absolute di�erences

between Q-values, not relative ones. This demands that their Q-values are

all judged on the same scale, but this is no restriction - we have to adjust

their rewards relative to each other anyway to make an adaptive collection.

8.1.2 Making agents weaker or stronger without re-

learning Q

So we try out di�erent combinations of the r

i

's, either by hand or by an au-

tomated search, looking for adaptive collections. A trick that was employed

to speed up our search is that we only have to learn the agents' Q-values

once at the start. We learn the Q-values for reward 1:

A

i

reward: if (condition) 1 else 0

Then to generate the Q-values for this:

A

i

reward: if (condition) r

i

else 0

we just multiply the base Q-values by r

i

(Theorem C.3).

Figure 8.1 shows how multiplying the base Q-values by a factor does not

change the Q-learning policy (the suggested action) but it does change the

progress of W-learning (the di�erences D � f) by exaggerating (making the

agent stronger) or levelling out (making it weaker) the Q-values, while still

preserving their basic contour. This trick allows us make agents weaker or

stronger without re-learning Q.

A scaled measure of W, however, would be indi�erent to multiplication

by a constant. Say we were using a standard deviation-based measure of

W. Instead of the static, z-score version of x5.4.1, we would probably use a

dynamic version depending on a

k

:

82

0

2

4

6

8

10

(0) (1) (2) (3) (4) (5) (6) (7) (8)a

Q

3 Q(x,a)

Q(x,a)

0.2 Q(x,a)

Figure 8.1: Multiplying the reward by a factor multiplies the Q-values by that

factor, which either exaggerates or levels out the contour Q

x

(a) = Q(x; a).

The agent will still rank the actions in the same order, and still suggest the

same preferred action, but its W-values will be di�erent.

83

W

i

(x) =

Q

i

(x; a

i

)�Q

i

(x; a

k

)

�

Multiplying the base Q-values by a constant c would multiply both the

mean and the standard deviation by c. But then our W-value would be:

W

i

(x) =

cQ

i

(x; a

i

)� cQ

i

(x; a

k

)

c�

that is, unchanged. So we would have no easy way of making agents

weaker or stronger. Scaling does not make agents all equal in strength to

each other. But the problem is that it makes their inequalities �xed.

Finally, if we can just multiply all the Q-values by a constant, can't we

just multiply the W-values by the constant instead of re-learning them? The

answer is that a W-value depends on who the current leader is. If we increase

r

i

in:

W

i

(x) = c

ki

(x)r

i

then W

i

(x) increases, but as soon as it does, everything may change. A

i

may go into the lead itself, causing such a huge loss to another agent that

it increases its W-value and then takes over the lead, and then A

i

's W-value

will reect a completely di�erent loss c

li

(x). Once a W-value changes, we

have to follow the whole re-organisation to its conclusion.

8.1.3 No Global reward function

The agents learn their Q-values from their local reward functions and then

organise their action selection by W-learning, all without any reference to the

global reward function of x4.3.1. In this work, for purposes of comparison

with the other action selection methods, we will now want to test the �tness

of the creature.

Obviously, if the global reward function of x4.3.1 still de�nes what we are

looking for, we still need to use it to score the �tness of the collection. But

it no longer need be available to the agents as an explicit function they can

learn against. It is only used to test them. Hence the �tness function could

be just implicit in the environment, as in the best Arti�cial Life research

[Ray, 1991, Todd et al., 1994].

As has been said many times in contrasting natural evolution with the

standard Genetic Algorithm, living things don't have an explicit global reward

84

de�ned or available to learn from. Their �tness test is only implicit in their

environment - whether they manage to live or die. How exactly they replicate

is up to them, and what persists over time is often a surprise to the observer.

Similarly, as we give our arti�cial creature more complex multi-goal tasks,

the global reward functions become much harder to design than the local ones

(as we argued in x4.4.3).

Imagine that we know what behavior we want when we see it, but we're

having trouble designing a suitable multi-reward global reward function. So

we adopt the strategy of tweaking the r

i

's by hand, letting the agents re-

organise themselves, and seeing the result. Say agent A

i

is not being ex-

pressed in the creature's behavior. We slowly increase r

i

until it �rst starts

to win the one or two absolutely crucial states that it needs. As we increase

r

i

further, it will win more and more extra states until eventually it would

dominate the creature. And so on.

We don't want to design all the explicit behavior, but at the same time

we do have some ideas as to what is suitable behavior and what is not,

so we do not want to simply design an abstract set of global values as in

x4.3.1 and hope for the best. What our decomposition into multiple reward

functions defended by competing agents gives us is e�ectively an adjustable

global reward function. We increase the strength in general of particular

agents, while still letting the agents sort out the details.

8.2 Analysis of best solution

So it would not necessarily be di�cult to design the collection of r

i

's by

hand, increasing ones that aren't being expressed, and so on. To test a

combination of r

i

's, we multiply the base Q-values by them, and then re-run

the W-competition.

In fact, in this work I use a simple Genetic Algorithm to automate the

search. The genotype encodes a set of r

i

's in chromosomes of length 4 (quite a

coarse-grained evolutionary search). We have a population of size 60, initially

randomised, evolving for 30 generations. The advantage of an automated

search is that I can be con�dent that I have put the same amount of e�ort

into �nding good solutions for each method.

For this test (W-learning with subspaces on the House Robot problem)

the best combination of r

i

's found by GA search was:

85

r

d

= 0:93

r

p

= 0:01

r

c

= 0:41

r

w

= 0:01

r

u

= 0:54

r

s

= 0:60

r

m

= 0:67

r

f

= 0:67

which averages 13.446 per 100 steps, slightly less than we got with Hier-

archical Q-learning, but achieved with a reduction in memory requirements

from 9.6 million to 1600.

We have solved the problem not with one complex entity, but via the

complex interactions of multiple simple entities.

Looking closer at our solution, note that A

w

, as predicted, is useless. With

such a tiny reward it will not be expressed at all. Neither, interestingly, will

A

p

- obviously other agents are managing to take the creature back to the

plug often enough for it to not be needed. The creature as a whole works by

interleaving all its goals. Here are the strongest few W-values:

Ws(7,2) 0.499

Ws(3,2) 0.413

Ws(0,2) 0.337

Ws(0,0) 0.257

Ws(2,2) 0.243

Wu(7,0) 0.240

Wd(4,0) 0.177

Wd(5,0) 0.176

Wd(1,0) 0.163

Wd(2,0) 0.131

Wd(0,0) 0.126

Ws(5,0) 0.119

Ws(6,2) 0.088

Wd(7,0) 0.085

Wd(6,0) 0.084

Wf(2,0) 0.078

Wf(4,0) 0.076

Ws(3,0) 0.070

Wf(6,0) 0.068

Wd(3,0) 0.068

Wf(0,0) 0.062

Ws(1,0) 0.061

Wf(1,0) 0.061

Ws(2,0) 0.048

Wf(5,0) 0.042

86

Wf(3,0) 0.042

Ws(4,0) 0.040

Wf(8,0) 0.037

Wf(7,0) 0.031

Ws(9,2) 0.030

Wd(8,0) 0.028

Wf(7,1) 0.017

Wc(3) 0.017

...

We can see that there is a complex intermingling ofW

s

, W

d

and W

f

. The

states (�; 2) (as seen by A

s

) are those where a human has been identi�ed as a

stranger. These are the crucial states for A

s

since it can pick up a continuous

reward if it keeps the human in sight. The states (�; 0) (as seen by A

f

) are

those where �re is visible without a wall in the way. These build up higher

W-values (A

f

is more con�dent about what to do) than when there is a wall

in the way, where A

f

will need some kind of stochastic policy.

Here are the probabilities of each action being suggested by A

f

when the

�re is in direction 4, behind a wall. The higher probability actions under a

soft max control policy (x2.2.3) are highlighted.

(a) (0) (1) (2) (3) (4)

Qf((4,1),a) 0.028 0.029 0.036 0.033 0.034

p(a) 0.078 0.084 [0.154] [0.121] [0.127]

(a) (5) (6) (7) (8)

Qf((4,1),a) 0.035 0.036 0.030 0.025

p(a) [0.135] [0.147] 0.091 0.063

We can see that A

f

builds up a broad front in approach to the wall.

Moving at right angles to the direction of the �re (directions 2 and 6) is good

because it is more likely to see the end of the wall. In any case, when the

route to the �re is blocked by a wall, A

f

is amenable to suggestions by other

agents, in particular by the combination of A

c

and A

d

, who drive the house

robot in a strong wandering behavior otherwise.

A

p

with its tiny reward is irrelevant - its job is done for it by A

c

bringing

the creature towards the centre and hence quite often past the plug. A

u

has a not insigni�cant reward, but �nds its job is done for it by A

s

, which

also wants to investigate unidenti�ed humans (in case they turn out to be

strangers). So A

u

lets A

s

do all the work for it, and as long as A

s

is being

obeyed by the creature, A

u

is happy:

87

Wu(0,0) -0.182

Wu(1,0) -0.193

Wu(2,0) -0.179

Wu(3,0) -0.152

Wu(4,0) -0.123

Wu(5,0) -0.112

Wu(6,0) -0.130

Wu(7,0) 0.240

The sole exception is state (7; 0), which for some reason fell to A

u

to be

responsible for, while A

s

took its turn at dropping out of the competition:

Ws(0,0) 0.257

Ws(1,0) 0.061

Ws(2,0) 0.048

Ws(3,0) 0.070

Ws(4,0) 0.040

Ws(5,0) 0.119

Ws(6,0) 0.013

Ws(7,0) -0.108

88

Chapter 9

W=Q (Maximize the Best

Happiness)

The �rst response to W-learning is to ask if we need such an elaborate value

of W. Why not simply have actions promoted with their Q-values, as we

originally suggested back in x5.3. The agent promotes its action with the

same strength no matter what (if any) its competition:

W

i

(x) = Q

i

(x; a

i

)

and we search for an adaptive combination of r

i

's as before. To test a

particular combination of r

i

's, we just multiply the base Q-values by them

and then see how the creature performs under the rule W=Q. There are no

W-values to learn.

If the agents share the same suite of actions, W=Q is equivalent to simply

�nding the action:

max

a2A

max

i21;:::;n

Q

i

(x; a)

since agents suggest their best Q over a and we take the highest W=Q over

i. That is, we are only interested in the best possible individual happiness.

We are going to start drawing economic analogies to our various approaches.

In economic theory, this would be the equivalent of a Nietzschean social

welfare function [Varian, 1993, x30], where the value of an allocation depends

on the welfare of the best o� agent.

The counterpart of this method would be:

min

a2A

min

i21;:::;n

(Q

i

(x; a

i

)�Q

i

(x; a))

89

that is, �nd the action which leads to the smallest unhappiness for some-

one and take it. This approach is pointless because it means just obey one

of the agents and cause unhappiness zero for them.

I have not seen an example of straightforward use of W=Q in Rein-

forcement Learning, but it can hardly be an original idea. What look like

examples [Rummery and Niranjan, 1994] turn out only to be using multiple

neural networks for storing Q-values Q

a

(x) in a monolithic (single reward

function) Q-learning system (x4.3.2) and then letting through the action

with the highest Q-value.

Searching for combinations of r

i

's under W=Q works very well, and �nds

the following collection which achieves a score of 15.313. Further, the memory

requirements are even less, since no W-values at all are kept.

r

d

= 0:93

r

p

= 0:41

r

c

= 0:41

r

w

= 0:08

r

u

= 0:80

r

s

= 0:14

r

m

= 0:08

r

f

= 1:00

9.1 Discussion

So have we wasted our time with measures of W that make compromises with

the competition? Would we have been better o� ignoring the competition

completely?

It seems on paper that W=Q should not perform so well, since it maxi-

mizes the rewards of only one agent, while W-learning makes some attempt

to maximize their collective rewards (which is roughly what the global reward

is). Consider the following scenario, where there are two possible actions (1)

and (2). The agents' preferred actions are highlighted:

a (1) (2)

Q1(x,a) [1.1] 1

Q2(x,a) 0 [0.9]

If we use W=Q, then agent A

1

wins (since 1:1 > 0:9), so action (1) is

executed, A

1

gets reward 1.1, and A

2

gets 0. If we use the W = (D � f)

method, then A

2

wins (since it would su�er 0.9 if it didn't, while A

1

would

90

only su�er 0.1 if disobeyed), so action (2) is executed, A

1

gets 1, and A

2

gets

0.9. If the global reward / �tness is roughly a combination of the agents'

rewards, then W = (D� f) is a better strategy. In short, this is the familiar

ethology problem of opportunism - can A

2

force A

1

into a small diversion

from its plans to pick up along the way a goal of its own?

There's one way our W=Q search will �nd to solve this - by just �nding

a high r

2

so that it becomes:

a (1) (2)

Q1(x,a) [1.1] 1

Q2(x,a) 0 [1.2]

But this is an unsatisfactory solution because it assumes that it is A

2

that always needs high Q-values in order for the two agents to behave op-

portunistically. What if in another state y, the situation is reversed and it is

A

1

trying to ask A

2

for a slight diversion:

a (1) (2)

Q1(x,a) [1.1] 1

Q2(x,a) 0 [0.9]

a (1) (2)

Q1(y,a) 0 [0.9]

Q2(y,a) [1.1] 1

Ideally we would take action (2) in both states. But W=Q will be unable

to prevent action (1) being taken in at least one of the states. Currently,

agent A

2

is losing state x and winning state y. We want it to win state x and

lose state y. If we increase r

2

to make it win state x, we increase all Q-values

across the board and make it even less likely to lose state y.

W=Q will not be able to �nd the opportunistic solution in cases like this,

whereas W-learning will. And cases like this will be typical. Agents that ask

for opportunities from other agents will themselves be asked for opportunities

at other times.

In fact, any of our static measures of W from x5.4, such as:

W

i

(x) = Q

i

(x; a

i

)�min

b2A

Q

i

(x; b)

would fail to be opportunistic in situations where W-learning would be.

When there are more than two actions, the other agent might not be taking

the worst action for A

i

, perhaps only the second best.

91

So, if we agree that W-learning will �nd opportunism where W=Q (or any

static measure) cannot, why did W-learning not perform better? The answer

seems to be that the House Robot environment does not contain problems

of the nature above. It contains situations where in state x, A

2

wants to

slightly divert A

1

alright, but only in situations where A

2

itself doesn't mind

being diverted - the 0 above becomes a 0.8. This is because all behaviors here

are essentially of the form `if some feature is in some direction, then move in

some direction' with rewards for arriving at the feature or losing sight of it.

So if Q

1

(x; 1) = 1:1 is similar to Q

1

(x; 2) = 1, it is because actions (1) and

(2) are movements in roughly the same direction, in which case Q

2

(x; 1) and

Q

2

(x; 2) will end up similar.

9.2 Happiness and Unhappiness

Despite its name, Minimize the Worst Unhappiness (W-learning) does not

mean we're always avoiding disaster. Expected reward and expected disaster

are two sides of the same coin, because if the leader is not obeyed it will be

unhappy. Say we have an agent who if obeyed will gain a high reward. If not

obeyed, it won't su�er a punishment, just nothing interesting happens. But

it might as well be a punishment since it lost the chance of that reward. It

will build up a high W-value under any (D � f) scheme.

So it would be mistaken to think that the di�erence between Minimize

the Worst Unhappiness and Maximize the Best Happiness is that one is

concerned with \Unhappiness" and the other with \Happiness". As just

noted, these are really the same thing. The real di�erence between the

two approaches is that Minimize the Worst Unhappiness consults with other

agents while Maximize the Best Happiness does not consult. Minimize the

Worst Unhappiness tries out other agents' actions to see how bad they are.

An agent in Maximize the Best Happiness only ever considers its best action.

92

Chapter 10

W-learning with full space

A further reason why W-learning underperformed is that we still haven't

found the ideal version of W-learning. Remember from x6.6 that using only

subspaces for W

i

(x) results in a loss of accuracy. Using the full space for

W

i

(x) would result in a more sophisticated competition.

Consider the competition between the dirt-seeker A

d

and the smoke-seeker

A

f

. For simplicity, let the global state be x = (d; f). A

d

sees only states

(d), and A

f

sees only (f). When the full state is x = (d; 5), A

f

simply sees

all these as state (5), that is, smoke is in direction 5. Sometimes A

d

opposes

it, and sometimes, for no apparent reason, it doesn't. But W

f

(5) averages

all these together into one variable. It is a crude form of competition, since

A

f

must present the same W-value in many di�erent situations where its

competition will want to do quite di�erent things. The agents might be

better able to exploit their opportunities if they could tell the real states

apart and present di�erent W-values in each one.

If we are to make the x in theW

i

(x) refer to the full state, then each agent

needs a single neural network to implement the function. The agent's neural

network takes a vector input x and produces a oating point output W

i

(x).

The Q-values can remain as subspaces of course. We are back basically to

the same memory requirements as Hierarchical Q-learning - subspaces for the

Q-values and then n times the full state x.

10.1 Strict highest W

Recall (x6.4) that if the winner is to be the strict highest W we start with

W random negative, and have the leading W

k

(x) unchanged, waiting to be

overtaken. This works for lookup tables, but will not work with neural net-

works. First because trying to initialise W to random negative is pointless

93

since the network's values will make large jumps up and down in the early

stages when its weights are untuned. Second because even if we do not up-

date it, W

k

(x) will still change as the other W

k

(y) change. And if the net

doesn't see W

k

(x) 7! d for a while, it will forget it.

We could think of various methods to try to repeatedly clampW

k

(x), but

it seems all would need extra memory to remember what value it should be

clamped to.

10.2 Stochastic highest W

The approach we took instead was: Start with W random. Do one run

of 30000 steps with random winners so that everyone experiences what it's

like to lose, and remembers these experiences. Then they each replay their

experiences 10 times to learn from them properly. Note that when learning

W-values in a neural network, we are just doing updates of the formW (x) 7!

d. No W-value is referenced on the right-hand side, unlike the case of learning

the Q-values. Hence there is no need for our concept of backward replay.

With a similar neural network architecture as before, the best combina-

tion of agents found, scoring 14.871, was:

r

d

= 0:67

r

p

= 0:01

r

c

= 0:80

r

w

= 0:08

r

u

= 0:14

r

s

= 0:60

r

m

= 0:21

r

f

= 1:00

which is better than W-learning with subspaces, but still not as good as

W=Q. A problem with this method of random winners is that it will actually

build up each W

i

(x) to be the average loss over all other agents in the lead:

W

i

(x) =

1

n� 1

X

k

(Q

i

(x; a

i

)�Q

i

(x; a

k

))

for k 6= i. So what we are doing is in fact �nding:

max

i

X

k

(Q

i

(x; a

i

)�Q

i

(x; a

k

))

94

This sum doesn't really mean anything (see the discussion in xF). For

example, it is certainly not the loss that the current leader is causing for the

agent.

Using random winners is equivalent to a stochastic highest W strategy

(x6.5) with �xed high temperature. We would probably have got better

results if we had used a more normal stochastic highest W - one with a

declining temperature. This would have multiple trials, replay after each

trial, and a declining temperature over time as in x4.3.2. But we have some

con�rmation that telling states apart is a good thing. In the next section,

we �nd out what happens when we can tell states apart perfectly.

95

Chapter 11

Negotiated W-learning

If other agents' actions are meaningless to it, all an agent can do is observe

what r and y they generate, as W-learning does. It could perhaps assume

that unknown actions have the e�ect of `do nothing' or `stay still', if they

have a Q-value for such an action (x2.1.2), but it might be unwise to assume

without observing.

However, if agents share the same suite of actions, and the other agent's

action is recognised by the agent, it already has built up an estimate of

the expected reward in the value Q

i

(x; a

k

). So rather than learning a W-

value from samples, it can assign it directly if the successful action a

k

is

communicated to it. We can do this in the House Robot problem, since all

agents share the same suite of actions (`move' 0-8). In other words, we can

follow the walk in x5.6 exactly, we do not have to approximate it.

In Negotiated W-learning, the creature observes a state x, and then its

agents engage in repeated rounds of negotiation before resolving competition

and producing a winning action a

k

. It is obviously to be preferred that the

length of this `instant' competition will be very short. In pseudocode, the

Negotiated W-learning method is, each time step:

observe state x

start with leader k := random agent and Wk := 0

loop:

for all agents i other than k

Wi := Qi(x,ai) - Qi(x,ak)

if highest Wi > Wk, new leader and goto loop

(loop terminates with winner k)

execute ak

96

This algorithm discovers explicitly in one timestep what W-learning only

learns over time.

It also gives us the high accuracy of telling states apart, as in W-learning

with full statespace, yet without needing to store such a space in memory.

In fact its accuracy will be better than W-learning with full statespace since

the latter method has to use a generalisation, whereas Negotiated W-learning

can tell states apart perfectly. We deal with each full state x as it comes in

at run-time. The agents recognise di�erent components of x and compete

based on this one-o� event.

We have no memory requirements at all for W. The W

i

are just n tempo-

rary variables used at run-time. In fact, note that `Negotiated W-learning'

is actually not learning at all since nothing permanent is learnt.

The best combination found, scoring 18.212, was:

r

d

= 0:87

r

p

= 0:01

r

c

= 0:54

r

w

= 0:01

r

u

= 1:00

r

s

= 0:08

r

m

= 0:74

r

f

= 0:34

As noted in x5.6.1, the Negotiated W-learning walk may have a di�erent

winner depending on which random agent we start the walk going with.

Since we run a new competition every timestep, this means that Negotiated

W-learning has a stochastic control policy. Note that W-learning may have

multiple possible winners too, depending on who takes an early lead. But

once a winner is found it has a deterministic control policy.

We could make Negotiated W-learning have a deterministic control policy

by recording the winners k(x) for each full state x so that we don't have to

run the competition again. On the other hand, we might have dynamic

creation and destruction of agents (see x17.5 later), in which case we would

want to re-run the competition every time in case the collection of agents

has changed.

Negotiated W-learning could also be used during the learning of Q itself,

in which case we will want to re-run the competition each time round with

better Q estimates.

97

11.1 Reactiveness

Theorem 5.1 shows that the instant competition (or walk through the matrix)

is bounded. To be precise, in the algorithm described above, the shortest

possible loop would be: Start with random leader. All other W

i

= 0, e.g. all

agents agree about what action to take, a

k

= a

i

8i. Loop terminates, length

1.

The longest possible loop would be: Start with random leader, whose

W-value is zero. Some other agent has W

i

> 0 and takes the lead. Try out

all other agents, only to come back to the original leader, whose W-value

is now non-zero, and it wins. We tried out the original agent, then (n � 1)

other agents, then the original agent again. Total length (n+ 1).

So the competition length is bounded by 1 and (n + 1). Here n = 8

so competitions will be of length 1 to 9. With the combination above, the

competition lengths seen over a run of 40000 steps

1

were:

1 234 0:6%

2 27164 68:0%

3 11978 30:0%

4 558 1:4%

5 10 0:025%

6 0

7 0

8 0

9 0

This gives a (reasonably reactive) average competition length of 2.3, as

illustrated in Figure 11.1.

Figure 11.1 also gives us some idea of how quickly our original method

of W-learning (x6) actually gets down to a competition between only one or

two agents.

1

Actually, for uninteresting technical reasons, 39944 steps.

98

0

1

2

3

4

5

6

7

8

9

time ->

Figure 11.1: The `reactiveness' of Negotiated W-learning. This is a typical

snapshot of 200 timesteps, showing how long it took to resolve competition

at each timestep. The theoretical maximum competition length here is 9.

99

Chapter 12

Collective methods

For completeness we now describe various Collective methods, though they

have not been tested. As will be discussed, we don't expect these Collective

methods to perform better, but it is still instructive to compare them with

the singular methods.

12.1 Maximize Collective Happiness

First, if the global reward is roughly the sum of the agents' rewards, maybe

we should explicitly maximize collective rewards. If the agents share the same

suite of actions, we can calculate:

max

a2A

"

n

X

i=1

Q

i

(x; a)

#

Note that this may produce compromise actions. The winning action may

be an action that none of the agents would have suggested. In economics, this

method would be equivalent to the classic utilitarian social welfare function

[Varian, 1993, x30] (the greatest happiness for the greatest number).

If the agents don't share the same suite of actions, it's hard to see what

we can do. We can't predict the happiness of other agents if one agent's

action is taken. We can only try it and observe what happens. This leads to

the following method.

100

12.2 Collective W-learning (Minimize Collec-

tive Unhappiness)

The counterpart of the above is:

min

a2A

"

n

X

i=1

(Q

i

(x; a

i

)�Q

i

(x; a))

#

That is, if agents share the same set of actions. We call this pure Minimize

Collective Unhappiness.

If agents don't share the same actions, we can approximate this by a

process we will call Collective W-learning. Each agent builds up a value

W

i

(x) which is the sum of the su�ering it causes all the other agents when

it is being obeyed. We look for the smallest W

i

(x). Like W-learning, agents

observe r

i

and y, and build up their de�cits over time. We only update the

leaderW

k

(x). In pseudocode, the Collective W-learning method is, each time

step:

observe state x

find Wk(x) = lowest Wi(x)

execute ak

Wk(x) -> sum (Qi(x,ai) - reward for Ai)

over all agents i

other than k

The change of W

k

(x) means that there might be a di�erent lowest W

next time round in state x, and so on. As with the W-values in singular

W-learning, E(W

k

(x)) � 0.

Remember that in singular W-learning, we don't mind if an agent never

experiences the lead because agents outside the lead are still being updated,

and it obviously hasn't taken the lead because its W-value isn't strong

enough. In Collective W-learning, on the other hand, we do want every

agent to experience the lead since that's the only way we get any estimate

of the W-value.

12.2.1 Strict lowest W

Because we update the leader's W-value only, there is again a problem with

initialisation of W-values. In singular W-learning, if an agent has a high

101

initial W-value, it wins for no good reason. In Collective W-learning, if an

agent has a high initial W-value, it never gets to try being the leader, for

no good reason. If all agents except one have unluckily high, positive, initial

W-values, the leader converges to its true W-value somewhere lower and wins

for no good reason.

So for di�erent reasons, we have the same initialisation strategy for both

- start with all W

i

(x) zero or random negative.

12.2.2 Stochastic lowest W

Alternatively, as in singular W-learning, we could avoid the initialisation

strategy by choosing the winner stochastically. Here this is the lowest W we

choose stochastically. To be precise, when we observe state x, we obey agent

A

k

with probability:

p(k) =

e

�W

k

(x)

T

P

i

e

�W

i

(x)

T

Note that

P

i

p(i) = 1.

12.2.3 Collective W-learning with subspaces

Consider the plug-seeking agent A

p

, building up a W-value W

p

(5), of the

total de�cits it causes other agents when it is obeyed when the plug is in

direction 5 and it moves in direction 5. What would this total de�cit be?

It would just be the average de�cit over all states for the other agents of

taking action 5, which is likely to be meaningless. It is a far cruder form of

competition even than W-learning with subspaces.

Collective W-learning needs the W-values to refer to the full space to

work.

12.2.4 Negotiated Collective W-learning

If agents do share common actions, we can do an instant `Negotiated' version

rather than waiting for W-values to build up over time. In pseudocode, the

Negotiated Collective W-learning method is, each time step:

102

observe state x

for all agents k

Wk := sum (Qi(x,ai) - Qi(x,ak))

over all agents i

other than k

find lowest Wk

execute ak

But this would not really have any advantages over the pure Minimize

Collective Unhappiness. This leads to the question of can we replace Nego-

tiated W-learning itself by a pure Minimize the Worst Unhappiness, which

we shall ask in x13.

12.3 Expected performance of Collective meth-

ods

We expect that any collective method will generate a similar sort of behavior

- keeping the majority of agents happy at the expense perhaps of a small

minority. Collective approaches are probably a bad idea if there are a large

number of agents. The creature will choose safe options, and no one agent

will be able to persuade it to take risks. Even if one agent is facing a non-

recoverable state (where if it is not obeyed now, it cannot ever recover and

reach its goal in the future), it may still not be able to overcome the opinion

of the majority. Consider how Maximize Collective Happiness deals with

this:

a (1) (2)

Q1(x,a) [10] 0

Q2(x,a) 3 [5]

Q3(x,a) 3 [5]

Q4(x,a) 3 [5]

Q5(x,a) 3 [5]

Q6(x,a) 3 [5]

Q7(x,a) 3 [5]

This is a crucial state for agent A

1

. To get such a big di�erence between

its Q-values this must be a non-recoverable state. If it could take action

(2) and then return to this state fairly quickly its Q-value would be higher,

something like:

103

Q

1

(x; a) = 0 + 0 +

2

(10)

Obviously if A

1

fails now, it can't return here easily. But Maximize

Collective Happiness chooses action (2). It ends up not doing very much,

giving mediocre rewards to the other 6 agents at the expense of losing the

�rst agent, perhaps forever. It's possible that, even if the global reward is

roughly the sum of the agents' rewards, Collective Happiness may still not

be the best strategy, because losing A

1

means that it can't contribute to the

total reward in the future. It's the whole creature equivalent of going for

short-term gain even at the expense of long-term loss. At moments like this,

our action selection scheme should keep A

1

on board.

As in the discussion about W=Q (x9.1) we could say why not increase

r

1

until A

1

tips the balance in favour of action (1). and again the answer is

that this would increase all of A

1

's Q-values, not just those in state x.

Collective W-learning (Minimize Collective Unhappiness) will give the

same result as Maximize Collective Happiness here. If A

1

is in the lead, the

sum W

1

(x) := 12. If any other agent A

i

is in the lead, its sum W

i

(x) := 10

and it will win. Action (2) gets executed. The basic problem with a collective

approach is that an individual agent must e�ectively beat the sum of the other

agents. This is alright if its Q-values are on a di�erent (larger) scale to theirs.

But we can't have all agents' Q-values on a di�erent scale. In W-learning,

individuals only have to beat other individuals.

Finally, situations can be found which are favourable to a Collective ap-

proach. Consider this case:

a (1) (2) (3) (4)

Q1(x,a) [1] 0 0 0.99

Q2(x,a) 0 [1] 0 0.99

Q3(x,a) 0 0 [1] 0

Q4(x,a) 0 0 0 [1]

Here a Collective approach is best (action (4)). If we start listening

to agent A

3

, we will jump to action (3), but then other agents will start

complaining and in general we risk ending up with an action that causes

disaster for three agents instead of just one.

This is the question, can we allow agent A

i

, in pursuit of its action, to

cause a loss less than or equal to its own for all the other agents? What may

answer this question is that it is probably more likely that just one agent

is facing disaster while all the others are living normally, then it is that all

104

agents are in danger of disaster at the same time. So it will very rarely be a

case of one agent dragging everyone else down with it, more likely just one

agent saving itself.

In other words, situations like the above will tend not to happen. The

agents' disaster zones will be spread over di�erent states. A crucial state to

one will be a humdrum state to the others. So listening to individual stories

may not be a dangerous strategy.

12.4 Collective Equality

Note that maximizing the sum of happiness (or the average happiness, which

is the same thing, divided by n) is not necessarily the same as spreading the

happiness round lots of agents. If an agent A

i

's Q-value is big enough it

can outweigh all the others. One agent receiving 100 with nine other agents

receiving zero is exactly equivalent under the Maximize Collective Happiness

method to all agents receiving 10 each. If we wanted to favour the second of

these, we would have to take some kind of standard deviation-based approach.

For example, we could calculate:

min

a2A

"

n

X

i=1

(Q

i

(x; a)�M)

2

#

where the mean M =

1

n

P

n

i=1

Q

i

(x; a). But just minimising the standard

deviation of the distribution is still not quite what we want. We don't want

all Q the same if they're all going to be low.

1

Similarly for other equality

measures (such as minimising the di�erence between the richest and poorest).

We can see how in the trade o� between equality and wealth in the Action

Selection problem, Minimize the Worst Unhappiness is beginning to look like

what we need.

1

Continuing our economic analogy, this would presumably be communism. We may

(or may not) be interested in equality at all costs in real human society - I have no interest

in making statements about that. But in the Action Selection problem, it is clearly not

what we want.

105

Chapter 13

Minimize the Worst

Unhappiness (revisited)

The consensus of the last few chapters is that a Minimize the Worst Unhap-

piness approach is expected to be a better Action Selection strategy than

either Maximize the Best Happiness or a Collective method. But we men-

tioned in x12.2.4 that we may not yet have found our ideal Minimize the

Worst Unhappiness method.

Consider why W-learning approximates a walk through the matrix rather

than a global decision. In W-learning, agents don't share the same actions,

so they can only see how bad things are by trying them out. It's impractical

to let every agent experience what it is like when every other is in the lead,

and experience it for long enough to build up the expected loss. W-learning

gets down to a winner a lot quicker by just putting someone in the lead and

leaving it up to the others to overtake.

NegotiatedW-learning concentrates on copyingW-learning in one timestep.

But once we share common actions, and we can draw up the matrix, we can

do anything. So let us return to that question of x5.6: Given a E(d

ki

(x))

matrix, who should win?

For example, should we search for the highest E(d

ki

(x)) in the matrix?

Should we search for the worst any agent could possibly su�er and then let

that agent win in case it does. For example, here agents A

1

or A

2

would

always win to prevent the other one winning (and loss of 1):

a (1) (2) (3) (4)

Q1(x,a) [1] 0 0.7 0.99

Q2(x,a) 0 [1] 0.7 0.99

Q3(x,a) 0.5 0.5 [1] 0.5

Q4(x,a) 0.7 0.7 0.7 [1]

106

But consider what happens with the W-learning walk. Say we start with

A

4

in the lead. A

3

is su�ering 0.5, and goes into the lead with W

3

= 0:5.

All other agents are now su�ering 0.3, so A

3

wins.

1

Agents A

1

and A

2

never

got to experience each other's disasters since neither ever tried out the lead.

The other agents gave them a way of avoiding each other. Of course, here

the outcome of the walk depends on which random agent we start with. If

we did start with A

1

or A

2

then we would get a straight competition between

them.

So searching for the worst E(d

ki

(x)) is a pessimistic method. W-learning

checks whether these hypothetical E(d

ki

(x)) will actually come to pass. In-

stead of asking what is the worst deviation an agent could possibly su�er,

W-learning asks what it is likely to su�er if it does not win. We don't want

to be afraid of an event that is not going to happen.

So what should our global decision be? How about instead of starting

the walk with a random action, start with the action that satis�es Maximize

Collective Happiness and let W-learning run from there. But this doesn't

help because W-learning will (almost) always switch from the initial leader

who has W = 0. So how about we look into the future before we switch.

Start with the action that satis�es Maximize Collective Happiness and only

switch if the agent currently su�ers a loss bigger than any it will cause when

it gets the lead. That is, only switch if you can guarantee you will win.

Competition lengths will all be 1 or 2.

To summarise, the W-learning walk is similar to a town hall meeting

where everyone is agreed except for one person. You can't just ignore their

problem, but if they get their way, someone else will be even more annoyed.

And so on, and you follow a chain leading who knows where. It would be

simple if you could just take a majority vote, but here we're trying to respect

individual stories.

13.1 Pure Minimize the Worst Unhappiness

If we could make a global decision, the decision we want is probably some-

thing like John Rawls' maximin principle from economics [Varian, 1993, x30].

This says that the social welfare of an allocation depends only on the welfare

of the worst o� agent. In our terminology this would be:

max

a2A

min

i21;:::;n

Q

i

(x; a)

1

Note in passing here that one agent su�ering 0.5 counts more than 3 agents su�ering

0.3. Numbers of agents don't count in W-learning - we only look at individual stories.

107

which would be a fairly sensible method, although for an agent A

i

to make

sure it wins state x, its strategy has to be to have the lowest absolute Q-values

in all the actions other than a

i

to wipe these actions out from the competition.

A single other agent A

j

with very low Q-values across the board could spoil

its plans. The creature would end up taking random actions, controlled by

the agent A

j

that can't score anything anyway.

The counterpart is really what we want:

min

a2A

max

i21;:::;n

(Q

i

(x; a

i

)�Q

i

(x; a))

We call this pure Minimize the Worst Unhappiness. Changing to any

other action will cause a worse worst-su�erer. This will choose action (3)

above (worst su�erer 0.3). W-learning approximates this when actions are

not shared. After the W-learning competition is resolved, changing to the

previous action will cause a worse worst-su�erer though changing to some

other untried action may not.

In W-learning, an agent is su�ering, so we have a change of leader, hope-

fully to a situation where no one is su�ering as much but in fact sometimes to

a situation where someone is now su�ering more. They will then go into the

lead, and so on. Only at the very last change of leader is the worst su�ering

reduced by the change. Change continues until an optimum is reached where

the current worst su�erer cannot be relieved without probably creating an

even worse su�erer. The W-learning walk may stop in a local optimum. Min-

imize the Worst Unhappiness can simply look at the matrix and calculate

the global optimum.

And while Negotiated W-learning restricts itself to suggested actions only,

the pure Minimize the Worst Unhappiness may pick a di�erent, compromise

action. It doesn't have to be a compromise - a single agent can still take

over if the di�erences between its Q-values are big enough, in which case it

can wipe out all actions other than a

i

from the competition. Like Negotiated

W-learning, Minimize the Worst Unhappiness gives us all the accuracy of the

full space without any memory requirements (as indeed do all the explicit

methods where actions are shared).

In short, if agents share the same suite of actions, then taking the Nego-

tiated W-learning walk is of no advantage. Instead we should use the global

decision of pure Minimize the Worst Unhappiness.

If agents don't share the same suite of actions, all we can do is repeat-

edly try things out and observe the unhappiness. We must use W-learning

with subspaces or full space to get an approximation of pure Minimize the

Worst Unhappiness. Using stochastic highest W (x6.5), being a simulated-

108

annealing-like process of a high temperature cooling down over time, will

make the walk more likely to settle on the global optimum (pure Minimize

the Worst Unhappiness) and less likely to stop on some local optimum.

13.2 Global v. Decentralised Calculations

Somehow Negotiated W-learning still seems more plausible than pure Mini-

mize the Worst Unhappiness, since it involves decentralised communication

among agents rather than a global-level calculation.

Negotiated W-learning might be better if the number of actions is very

large (or continuous) - pure Minimize the Worst Unhappiness has to cycle

through them. However, the answer there might be that Minimize the Worst

Unhappiness could restrict itself to just the suggested actions (that's what

Negotiated W-learning does). And the global decision on these would still

be better than the walk:

min

a2a

1

;:::;a

n

max

j21;:::;n

(Q

j

(x; a

j

)�Q

j

(x; a))

109

Chapter 14

Summary

14.1 The four approaches

There are four basic approaches to organising action selection without refer-

ence to a global reward. When the agents share the same set of actions, we

can calculate all four approaches immediately. They are:

� Maximize the Best Happiness

max

a2A

max

i21;:::;n

Q

i

(x; a)

This is equivalent to W=Q and can be implemented in that form when

actions are not shared (or indeed when they are shared).

� Minimize the Worst Unhappiness

min

a2A

max

i21;:::;n

(Q

i

(x; a

i

)�Q

i

(x; a))

When actions are not shared, this can be approximated by W-learning.

� Minimize Collective Unhappiness

min

a2A

"

n

X

i=1

(Q

i

(x; a

i

)�Q

i

(x; a))

#

When actions are not shared, this can be approximated by Collective

W-learning.

110

� Maximize Collective Happiness

max

a2A

"

n

X

i=1

Q

i

(x; a)

#

This approach can only be implemented at all if actions are shared.

But in fact, Minimize Collective Unhappiness is pretty much the same

thing, and that can be approximated by Collective W-learning when

actions are not shared.

There are of course other combinations of maximizing, minimizing and

summing which do not make any sense. For the full list see xF.

The �rst approach above has a counterpart discussed in x9. The sec-

ond approach has a counterpart discussed in x13. The third and fourth

approaches are counterparts of each other.

111

Memory No. updates No. updates Ability to

requirements per timestep per timestep discriminate

when when states

n no.agents learning exploiting

x subspace

X full space

Q-learning 1.Xa 1 0 Partial

Hierarchical Q-learning n.xa + 1.Xn n.1 + 1 0 Partial

Max Best Happ. (W=Q) n.xa n.1 n.1 Full

Min Worst Unhapp. n.xa n.1 | Full

W-learning (subspaces) n.xa + n.x n.1 + (n-1).1 0 Poor

W-learning (full space) n.xa + n.X n.1 + (n-1).1 0 Partial

Negotiated W-learning n.xa n.1 1 to n+1 Full

Min Coll. Unhapp. n.xa n.1 | Full

Coll. W (subspaces) n.xa + n.x n.1 + 1.(n-1) 0 Poor

Coll. W (full space) n.xa + n.X n.1 + 1.(n-1) 0 Partial

Negotiated Coll. W n.xa n.1 n.(n-1) Full

Max Coll. Happ. n.xa n.1 | Full

General comparisons between the action selection methods.

A dash indicates `not applicable' here.

`Number of updates per timestep' is modelled on Watkins [Watkins, 1989]

where he wanted to impose limited computational demands on his creature per

timestep. The format here is (number of agents) times (updates per agent). We

are looking for updates that can be carried out in parallel in isolation.

In the `Ability to discriminate states' column, `Full' indicates complete ability

to discern the full state. `Partial' indicates that the ability to discern the full state

depends on the generalisation. `Poor' indicates that agents see subspaces only.

Are there any missing methods here? How about W=Q with full space? That

would be pointless since that's just Q with full space. The agent will just learn the

same Q-values repeated (x4.4.1). Similarly, Maximize Collective Happiness with

full space is just Q with full space. The W-learning methods are approximations

of the approach to which they belong when actions are not shared. In which case,

the practical solution is to try out being disobeyed and observe the Unhappiness,

as opposed to expanding our action set and learning new Q-values. There is no

equivalent of a W-learning method for the Happiness approaches.

112

Memory No. updates No. updates Best

requirements per timestep per timestep solution

(per agent) (per agent) found

when when

learning exploiting

Hand-coded program | | | 8.612

(strict hierarchical)

Q-learning 10800000 1 0 6.285

Hierarchical Q-learning 9601440 2 0 13.641

Max Best Happ. (W=Q) 1440 1 1 15.313

Min Worst Unhapp. 1440 1 | n/tested

W-learning (subspaces) 1600 2 0 13.446

W-learning (full space) 9601440 2 0 14.871

Negotiated W-learning 1440 1 average 2.3 18.212

Min Coll. Unhapp. 1440 1 | n/tested

Coll. W (subspaces) 1600 8 0 n/tested

Coll. W (full space) 9601440 8 0 n/tested

Negotiated Coll. W 1440 1 7 n/tested

Max Coll. Happ. 1440 1 | n/tested

Comparisons between the methods as applied in the House Robot problem.

A dash indicates `not applicable' here.

Full details of the experiments, and in particular how we end up comparing a

single score for each method, are in xG. For discussion of the spread of scores for

each method see x16.3.

Here we show the Number of updates per timestep per agent if the system is

totally parallelised (each agent has its own processor). Remember here n = 8.

Actually for testing Hierarchical Q-learning, I used n = 5 to reduce the size of

the Q(x; i) space. The memory requirements shown here are for n = 8.

113

Need Full Agents

an explicit statespace must share

global reward must exist same suite

function? somewhere? of actions?

Q-learning Yes Yes Yes

Hierarchical Q-learning Yes Yes No

Max Best Happiness (W=Q) No No No

Min Worst Unhappiness No No Yes

W-learning (subspaces) No No No

W-learning (full space) No Yes No

Negotiated W-learning No No Yes

Min Collective Unhappiness No No Yes

Collective W-learning (subspaces) No No No

Collective W-learning (full space) No Yes No

Negotiated Collective W-learning No No Yes

Max Collective Happiness No No Yes

Restrictions on Decentralisation.

`No' is good here.

There is `no free lunch' in decentralisation. If we want a totally decentralised

model, with separate state and action spaces, we have to use either a static method

like W=Q, with its inability to support opportunism, or W-learning with sub-

spaces, with its inaccurate competition. In a world where opportunism was more

important, W-learning with subspaces wouldn't necessarily be worse than W=Q,

as it was here.

114

14.2 Winner-take-all v. Compromise actions

The action selection methods can be categorised based on the action they

choose:

� Hierarchical Q-learning, Maximize the Best Happiness (W=Q), W-

learning (all types) and Collective W-learning (all types) are winner-

take-all action selection schemes. There is a winner A

k

that gets its

exact action a

k

executed. That is, we only search among the suggested

actions a

i

.

In fact these are quali�ed winner-take-all schemes because control may

switch from agent to agent per timestep. The winner isn't guaranteed

control of the body for some n timesteps.

In W-learning, agents suggest only their favourite actions, and we pick

one of these. They do not reveal their second or third favourites. In

fact though, with multiple agents all suggesting di�erent actions a

i

,

something in e�ect like a search through multiple actions looking for

a compromise may occur (although we do not necessarily try out even

all a

i

before getting down to a winner).

� Minimize the Worst Unhappiness, Minimize Collective Unhappiness

and Maximize Collective Happiness are schemes where we may get a

compromise action. The executed action may be an action that none of

the agents would have suggested. That is, we search among all actions

a.

For a compromise action, agents really need to share the same suite

of actions because if they don't share actions, they can't predict how

another action will a�ect them. All they can do is observewhat happens

when the action is taken. And then it would be rather impractical to try

out executing every single action a. W-learning tries out executing only

the a

i

's (and even then, normally only some of them) before reaching

a decision.

Consider what an elaborate system we would need to �nd compromise

actions (try out executing every single a) when agents don't share the

same set of actions. The leader could execute its second best action.

Other agents observe how bad that was, and so on. But we would need

to keep a memory, since there is nothing to say that the leader's second

best action is better for the other agents - it might be even worse!

Finally, compromise actions are useful for those cases where otherwise

we can't avoid total disaster for some agent, but it's important that

115

our scheme doesn't always take a compromise action, otherwise nothing

will get completed. It should be just a possibility under the scheme. In

Minimize the Worst Unhappiness, one agent can still force the creature

to listen to its exact action if it has big enough di�erences between

Q-values for all other actions.

� Monolithic Q-learning doesn't �t into either of these two groups since

there are no competing agents.

Note that none of these are schemes where the actions of agents are

merged. Merging or averaging actions does not make sense in general but only

with certain types of actions. For example, see [Scheier and Pfeifer, 1995],

where all agents suggest a speed value for the left motor and one for the right

motor. These type of actions are amenable to addition and subtraction.

14.3 Single-Mindedness

We will attempt to summarise both this chapter and the preceding discussion

in one diagram.

Collective methods (x12) trample on the individual by trying to keep the

majority happy. They are likely both to ruin some individual plans, while at

the same time leading to problems with dithering, in which no goal is pursued

to its logical end.

W=Q (x9) goes to the other extreme in having only one agent in charge,

and perhaps su�ers because it does not allow opportunism. It won't compro-

mise with the second most needy agent.

W-learning may be a good balance between the two, allowing oppor-

tunism without the worst of dithering. One agent is generally in charge, but

will be corrected by the other agents whenever it o�ends them too much.

W-learning tries to keep everyone on board, while still going somewhere.

For a further analysis of how Minimize the Worst Unhappiness gets tasks

completed (enforces persistence) see x15.1.3.

[Maes, 1989] lists desirable criteria for action selection schemes, and in it

we see this tension between wanting actions that contribute to several goals

at once and yet wanting to stick at goals until their conclusion. We can

represent this in a diagram of `single-mindedness' (Figure 14.1).

116

Maximize Best
Happiness
(W=Q)

Minimize Worst
Unhappiness
(W-learning)

Maximize Collective
Happiness

Minimize Collective
Unhappiness
(Collective W-learning)

single-mindedness

fanatical
one-track
mind

opportunism dithering

Figure 14.1: The `single-mindedness' of the methods that organise action

selection without reference to a global reward.

117

Chapter 15

Related work

The action selection methods introduced in this thesis will now be compared

to a range of alternative work. Mostly we will be contrasting the work with

the Minimize the Worst Unhappiness strategy, and in particular with W-

learning.

Many of these action selection schemes mix together what we might call

the `Q-problem' (actions to take in pursuit of a single goal) with the `W-

problem' (choice between conicting goals). Our methods rigorously separate

these two di�erent problems.

15.1 Ethology

First we show how our model addresses various classic problems of animal

behavior.

15.1.1 Time-based action selection

The division of control used in all the action selection methods in this thesis

is state-based rather than time-based. In interleaving di�erent behaviors,

various authors have argued for time-based switching (e.g. see [Ring, 1992]).

Blumberg [Blumberg, 1994] argues the need for a model of fatigue, where

a switch of activity becomes more likely the longer an activity goes on. He

points out that animals sometimes appear to engage in a form of time-sharing.

This is the same philosophy as Lorenz's `Psycho-Hydraulic' model in

ethology. Lorenz's agents have a constant pressure to get executed, increas-

ing over time. This can lead to vacuum activity - where an agent has to get

expressed just because it's been frustrated for a long time, even if it is irrele-

vant to the current situation x. Similarly, pressure is reducing on agents that

118

are being expressed, which may stop them even though they are not �nished

their task. While some animals do indeed appear to engage in vacuum activ-

ity, Tyrrell [Tyrrell, 1993] argues convincingly that vacuum activity should

be seen as a aw in any action selection scheme. Control should switch for a

reason.

It is not clear anyway that time-sharing e�ects cannot be achieved by

a suitable state representation x. If an activity goes on for long enough,

some internal component of x (that is, some internal sense, e.g.`hunger')

may change, leading to a new x and a potential switch in activity.

The advantage of a state-based approach is that x contains a reason why

control has switched, which we can then analyse. We can discuss who is

winning particular states and why, and so on. The analysis of time-based

action selection seems much more complex and arbitrary.

In W-learning, control never switches without a reason grounded in the

present (in the current state x). I am unconcerned about agents being frus-

trated for long stretches of time, endlessly suggesting their actions and being

disappointed (such as the nest-seeking agent A

n

in x7.3). It's not viewed as

pain, or Lorenz's water pressure building up. It's only information.

15.1.2 Low-priority activities

A classic ethology problem is: if priorities are assigned to entire activities,

how does a low-priority activity ever manage to interrupt a higher-priority

one? For example, the conict between high-priority feeding and low-priority

body maintenance discussed by [Blumberg, 1994]. Here is how W-learning

would solve it.

The Food-seeking agent A

f

suggests actions with weight W

f

(x). The

Cleaning agent A

c

suggests actions with weight W

c

(x). Both see the full

state x = (e; f; c) where:

� e is external senses

� f is an internal sense, taking values 2 (very hungry), 1 (hungry) and 0

(not hungry)

� c is an internal sense, taking values 2 (very dirty), 1 (dirty) and 0

(clean)

The sense c is irrelevant to the rewards that the Food-seeking agent A

f

receives. Both e (whether food is visible) and f are relevant to its strategy.

We expect that A

f

's reward function r

f

(x; y) is a function partly of internal

sense, giving higher rewards for eating when very hungry (consider it as a

119

chemical rush - then it would be stronger when the creature is very hungry).

Then the W-values will work out higher when very hungry too. We will �nd

that for a given e, A

f

will rank its W-values:

W

f

(e; 2; �) > W

f

(e; 1; �) > W

f

(e; 0; �)

Why would the W-values work out like this? Because if it is very hungry

and eats, it gets a high reward R, otherwise zero. Hence W (the di�erence

between the two) is high. If it is not hungry and eats, it gets a low reward r,

otherwise zero. Hence W (the di�erence between the two) is low. Actually,

because the Q-values represent a discounted look at future steps, the situation

will be slightly more complex. It will be more like:

Q(very-hungry,eat) = R

Q(very-hungry,not-eat) = R (we can eat on the next step)

Q(not-hungry,eat) = r

Q(not-hungry,not-eat) = r

Hence:

W(very-hungry) = (1�)R

W(not-hungry) = (1�)r

W is still higher when very hungry. Here the W-value is inuenced simply

by the size of the reward.

Similarly for the Cleaning agent A

c

. Here both e and f are irrelevant to

its rewards. It can clean at any time, irrespective of what its external senses

e are. It will rank its W-values:

W

c

(�; �; 2) > W

c

(�; �; 1) > W

c

(�; �; 0)

So how would the low-priority activity get expressed? A very strong Food-

seeker A

f

, only rarely interrupted by a Cleaner A

c

, would be represented by,

for a given e:

W

f

(e; 2; �) > W

f

(e; 1; �) > W

c

(e; �; 2)

> W

f

(e; 0; �) > W

c

(e; �; 1) > W

c

(e; �; 0)

in which case A

f

wins all the states (e; 2; �) and (e; 1; �). A

c

wins the

state (e; 0; 2). And A

f

wins the states (e; 0; 1) and (e; 0; 0). The creature

only cleans itself when it is very dirty and not hungry. Otherwise, it feeds.

The typical weak, low-priority agent only manages to raise its head in one

or two extreme states x which are its very last chance before total disaster.

120

It has been complaining all along but only at the last moment can it manage

a W-value high enough to be obeyed.

Note that by feeding continuously, the state may change from (e; 2; 2) to

(e; 0; 2), in which case there is a switch of control. But this switch of control

has a reason - it is not fatigue with the feeding action, it is the movement into

a new state x. The e�ect of time-based switching occurs when the state-based

creature is in continuous interaction with a changing world.

Having internal hunger that increases over time does not necessarily break

our MDP model. As [Sutton, 1990a] points out, we simply redraw the bound-

ary between the creature and its environment. Where x is `hungry', y is

`very hungry', and a is `do nothing', we might have say P

xa

(x) = 0:9 and

P

xa

(y) = 0:1 for any timestep.

To enable a state-based approach to action selection, we do in fact assume

that goals generally decline in urgency after they have been in charge of the

creature (and thus able to satisfy themselves) for a long time. Or at least

that other goals increase in urgency if not pursued for a long time. This is

actually quite a weak assumption. Most problems with any potential for goal-

interleaving can be made to �t into this scheme, with the reward-generation

of an agent having the potential to be at least temporarily exhausted if the

agent is in charge for a very long time. The need for time-based action

selection (above) seems to come when behaviors can go on receiving high

rewards inde�nitely.

[Whitehead et al., 1993] make this explicit in their scheme, where goals

are inactive (don't compete), start up at random (are activated), compete

until they are ful�lled, and then fall inactive again. In this work, goals are

implicitly activated and deactivated by suitable accompanying internal and

external senses.

15.1.3 Dithering and Persistence

Minsky [Minsky, 1986] warns that too simple forms of state-based switching

will be unable to engage in opportunistic behavior. His example is of a hungry

and thirsty animal. Food is only found in the North, water in the South. The

animal treks north, eats, and as soon as its hunger is only partially satis�ed,

thirst is now at a higher priority, so it starts the long trek south before it has

satis�ed its hunger. Even before it has got south, it will be starving again.

One solution to this would be time-based, where agents get control for some

minimum amount of time.

Again, however, time-based switching is not the only answer. As Sahota

[Sahota, 1994] points out, the real problem here is having actions based only

on the urgencies of the goal, independent of the current situation. Oppor-

121

tunistic behavior is possible with state-based switching where agents can tell

the di�erence between situations when they are likely to get an immediate

payo� and situations when they could only begin some sequence of actions

which will lead to a payo� later. In Minsky's example, let the full state

x = (f; w; h; t) where:

� f is an external sense, taking values � (food visible) and � (no food

visible)

� w is an external sense, taking values � (water visible) and � (no water

visible)

� h is an internal sense, taking values 2 (very hungry), 1 (slightly hungry)

and 0 (not hungry)

� t is an internal sense, taking values 2 (very thirsty), 1 (slightly thirsty)

and 0 (not thirsty)

The food-seeking agent A

f

presents W-values W

f

(x). The water-seeking

agent A

w

presents W-values W

w

(x). When we can see food but no water we

would expect something like:

W

f

(�;�; 2; 2) > W

f

(�;�; 1; 2) > W

w

(�;�; 1; 2) > W

f

(�;�; 0; 2)

We start o� very hungry and very thirsty. We don't stop feeding (and

start dithering) when we get down to slightly hungry. We only stop when we

get down to not hungry, and only then is A

w

able to persuade us to leave, in

the absence of visible water. If water was visible, A

w

could have persuaded

us to leave earlier with a higher W-value:

W

w

(�;�; 1; 2) > W

w

(�;�; 1; 2)

It is not just a vain hope that W-values will be organised like this. It is in

the very nature of the way we have designed them on top of Q-values. The

agents we use can tell the di�erence between immediate and distant likely

payo�, and will present di�erent W-values accordingly. Consider how A

w

might present higher W-values when water is visible. If water is visible, it

predicts reward 1 if obeyed and reward if not obeyed (not reward 0, since

even if not obeyed now, it can get it on the next step). If no water is visible, it

predicts reward if obeyed (assume we move to a state where water is visible

and we can get it on the next step) and reward

2

if not obeyed (again, we

can be obeyed here on the next step):

122

Q(water-visible,obeyed) = 1

Q(water-visible,disobeyed) =

Q(no-water-visible,obeyed) =

Q(no-water-visible,disobeyed) =

2

Hence:

W(water-visible) = (1�)

W(no-water-visible) = (�

2

) = (1�)

So its W-value is lower than for when water is visible. It might be very

thirsty in both situations, but it presents W-values based also on whether it

thinks it has a chance of satisfying its thirst. Here the W-value is inuenced

by how many steps away the reward is.

We see here how W-learning will support persistence, or sticking on a

goal. When one agent A

i

's goal is in sight, the di�erences if it is not obeyed

are between immediate rather than delayed rewards. Hence the di�erences

between Q-values are larger (not discounted). As its goal approaches, the

agent will generate higher W-values until satis�ed.

Ethologists have generally proposed positive feedback models to explain

persistence (see [McFarland, 1989, x1]), where the strength W

f

of the feed-

ing agent is being increased by the act of feeding itself (while at the same

time being decreased by the reduction in hunger, so that it is still probably

decreasing overall). The above analysis shows that such a time-based mech-

anism is not necessary to explain persistent behavior at least. A state-based

explanation is also possible. The fact that we are eating means that food

exists close by, and it will be easy (probably) to eat some more in the next

few immediate timesteps. Other goals may be a number of timesteps away

from ful�lment. Persistence happens because even though rewards are low,

they are close by.

Note that our persistence mechanism, where W-values increase as the goal

is approached, can also be seen as a positive feedback process (since being

obeyed makes you even more likely to be obeyed on the next step, when you

will have even higher W-values), but it is a di�erent type of positive feedback

process, state-based rather than time-based.

Our method factors in what McFarland [McFarland, 1989] calls the cost

of switching from one activity to another, where nothing useful may happen

for some time. Here, the Q-values are a promise of what will happen in

the future, suitably discounted, and the W-value scheme makes an action

selection decision based on the di�erent agents' promises. High rewards far

away may compete against low rewards close by.

123

15.1.4 McFarland

Looking closer at McFarland's work, a W-value can be seen as equivalent to

the `tendency' to perform a behavior in his model of motivational competition

[McFarland, 1989].

His motivational isoclines are contour lines on a map of the state space

(similar to Figure 5.6 but for a single agent A

i

), joining together states

x

1

; x

2

; : : : whose W-values are equal: W

i

(x

1

) =W

i

(x

2

) = � � �

In his model, the continuous performance of an activity traces a trajectory

through the statespace, which may cross isoclines, leading to a switch of

behavior. That is, performing an activity may cause us to enter a new state

x in which there is a new winner W

k

(x) = max

i

W

i

(x) and hence a switch

of behavior. Note that my model does not assume the trajectory has to be

continuous - we may make leaps from point to point in the statespace.

We now classify the list of speci�c models into three main groups - hier-

archical, serial and parallel.

15.2 Hierarchical models

First, by hierarchical models we mean multi-level systems where the modules

are built into some kind of structure. Some modules have precedence over

others, and control ows down to their submodules. While many problems

seem to lend themselves to this kind of solution, there is normally a consid-

erable burden of hand-design. This thesis has consistently argued that there

is no future in models that are not capable of some self-organisation.

15.2.1 Brooks' Subsumption Architecture

Brooks' Subsumption Architecture was introduced in x5, and his ideas used

as the basic inspiration for our model. A Brooks-like hierarchy would be a

special case of our more general model. To implement a hierarchy, we would

have strong higher level agents and weak lower ones such that when nothing

is happening relevant to the higher agent, it does not compete against the

lower ones but when it competes it will always win.

A hierarchy is only one of many possible ways that W-learning agents

might automatically divide up control. In this problem, the best solutions

were not strict hierarchies. Note also that with W-learning, a hierarchy may

form only temporarily at run-time, and be dissipated when new agents are

created that disrupt the existing competition.

124

Hierarchies may themselves be what Brooks [Brooks, 1991a] criticised

traditional AI for - structures whose main attraction is that we �nd it easy

to think about them. Just as we �nd it easier to think of central control than

distributed, so we �nd it easier to think of hierarchies than of collections of

agents that cannot be ranked in any single order. One agent sometimes

forbids the other, then later vice versa.

Brooks acknowledges this to a certain extent in [Brooks, 1994, x3], but

then avoids the question of who should win in a competition between peers

by moving on (in the Cog project) to models of spreading excitation and

inhibition through networks.

15.2.2 Hierarchies in Ethology

Hierarchies have also long been popular in ethology. Baerends, for exam-

ple, put a great deal of work into breaking down the behaviors of the dig-

ger wasp and the herring gull into multi-level hierarchical structures. See

[Tyrrell, 1993, x8] for a survey of this and Tinbergen's hierarchical models.

15.2.3 Nested Q-learning

Nested Q-learning will be introduced in x18.1. It can be used as a hierarchical

model, but that chapter shows that it can also be built into a more general

scheme, of which a traditional hierarchy is only a special case.

15.2.4 Feudal Q-learning

Feudal Q-learning will be introduced in x18.2. Again, it is easy to think of

it as a hierarchical scheme, but I show that that is only a special case of the

more general model.

15.3 Serial models

Self-organising models divide into two groups - serial (agents must termi-

nate before other agents start) and parallel (agents endlessly interrupt each

other). The Action Selection problem is essentially about the latter. Serial

or sequential models have already been criticised in x3.

125

15.3.1 Singh's Compositional Q-learning

Singh's Compositional Q-learning [Singh, 1992] was addressed in x3.

15.3.2 Wixson

Wixson's model (to be introduced in x18.1) is basically a serial form of Nested

Q-learning, where we must wait for agents to terminate at their goal states

before control may switch to a new agent.

15.3.3 Maes' Spreading Activation Networks

Maes' Spreading Activation Networks [Maes, 1989, Maes, 1989a] or Behavior

Networks consist of a network of agents (or nodes) which are aware of their

preconditions. Nodes can be linked to from other nodes that can help to

make those preconditions come true, or be inhibited by other nodes who will

cause their preconditions to not hold. They can in turn link to other nodes

whose preconditions their behavior can a�ect.

Agents in our system do not have explicit preconditions. It's just that

if we are in a state x where agent A

i

cannot take any meaningful action,

its W-value W

i

(x) will be low since there will be little di�erence between

its Q-values whatever action is taken. So it will in e�ect not compete. Our

system could also be seen as more decentralised in the sense that agents have

no explicit concept of what other agents' goals might be. They only discover

when the other agents start taking their actions.

Maes' spreading activation mechanism spreads excitation and inhibition

from node to node. As in other methods, we see that the `Q-problem' and the

`W-problem' are mixed together. For example, the desire to pursue a goal

sends excitation to the consummatory action node, which if not executable

propagates excitation back to appetitive action nodes. In this way links

encode temporal appetitive-consummatory relationships between nodes. But

in our system, basic Q-learning takes care of this on its own (x2.1.6) and it

is not seen as part of the problem of action selection.

The advantage of mixing the `Q-problem' and the `W-problem' here is

that appetitive nodes can be shared by multiple goals. But Tyrrell then shows

[Tyrrell, 1993, x9.3.3] that there may be problems caused if we can't tell if

the `Explore' node is excited multiple times because it is serving multiple

goals or because it is serving multiple paths to the same goal. Ideally, if it

was serving multiple goals, we would allow it to be highly excited, whereas

if it was only serving multiple paths to the same goal we would divide its

excitation by the number of paths to express that it was only serving one

126

goal. But because we can't tell the di�erence at a local level, we can't de�ne

a local rule to divide up the excitation or not.

In my architecture, each goal is taken care of by a separate agent. Each

has to implement its own explore. The equivalent of `Explore' serving mul-

tiple goals would be multiple agents wanting to take the same action. If an

action serves multiple goals it will be defended by multiple W-values. If it

serves one goal via di�erent paths it will only be represented by one W-value.

It might seem wasteful that I make each agent implement its own `Ex-

plore' but this does not mean that each agent actually wants its `Explore' to

be obeyed. All I mean is that each is a complete sensing-and-acting machine

which can suggest an a for each x. If there is an e�cient specialised Explore

agent present, agents �nd they do better when their own rudimentary explore

or random motion action is not taken. So they do not try to compete (as

long as Explore is winning).

Say we have 5 agents, and 3 of them want to do the same thing. In Maes'

scheme they would divide up their excitation but as Tyrrell points out they

then can't compete on an equal footing with the other 2.

In W-learning, all 5 would initially compete all against each other. If

one of the 3 starts winning the whole competition, the other two of the 3

will back o�. Agents back o� when someone else is �ghting their battles for

them, but only if they are winning.

15.4 Parallel models

In parallel, or Pandemonium, models we have multiple agents trying to con-

trol the body simultaneously, and some intelligent (or dumb) switch deciding

which one of them (or combination of them) to let through.

15.4.1 Lin's Hierarchical Q-learning

Lin's Hierarchical Q-learning has already been introduced (in x3) and subse-

quently tested.

15.4.2 Pandemonium

The ancestor of our abstract decentralised model of mind is Selfridge's Pande-

moniummodel [Selfridge and Neisser, 1960]. This is a collection of \demons"

127

shrieking to be listened to. The highest shriek wins. Selfridge's implementa-

tion was in the area of pattern recognition or classi�cation, where the demons

examine di�erent features, and their weight (shriek) is the similarity of the

input to the structure of the demon. For example, each demon might be a

character-recogniser. Demons' weights might be hand-coded, or they might

be learnt by Supervised Learning. When the correct output is given, weights

could be strengthened or weakened.

While there are many descendants of this kind of model in pattern recog-

nition, it is not clear how it translates to the Action Selection problem, where

demons become control programs, suggesting actions to execute, each pursu-

ing di�erent goals. What should the weights represent? Similarity to what?

What is the \correct" demon? How should the weights change?

15.4.3 Competitive Learning

The Competitive Learning algorithm, an unsupervised learning technique in

connectionism, can be seen as a detailed implementation of a pandemonium

model.

In a neural network, the input pattern must be somehow encoded in the

weights on the links leading into the hidden layer. Normally one �nds that

the representation is spread over a number of hidden units cooperating. In

Competitive Learning, a single hidden unit will represent the input pattern.

Given a particular input, a large number of hidden units compete to represent

it. The winner is the one whose incoming weights are most similar to the

input. The winner then modi�es its weights to be even more similar to the

input. We do not (as we normally would) modify the weights of all hidden

units, only those of the winner.

In this way, each hidden unit ends up winning a di�erent cluster of input

patterns and its incoming weights converge to the centre of the cluster.

Again though, while a detailed implementation is useful, this is still di-

rected towards the pattern recognition or category formation problem. It

hasn't answered the question of how to apply this to Action Selection.

15.4.4 Jackson

Jackson [Jackson, 1987] attempts to apply a pandemonium model to Action

Selection. He has demons taking actions on a playing �eld, forging links with

successor demons in the stands by exciting them, to get temporal chains of

demons.

This is partly temporal chains of actions, which we saw is taken care

of in pursuit of a single goal by basic Q-learning (x2.1.6). It is also partly

128

temporal sequencing of agents, or time-based action selection, that I criticised

in x15.1.1. As we can see, the `Q-problem' and the `W-problem' are mixed

together here.

Jackson's paper is full of interesting ideas but it is a conceptual model

so it is hard to know whether it would really work as claimed. It would be

interesting to see a model detailed enough for implementation.

15.4.5 The DAMN Architecture

The Distributed Architecture for Mobile Navigation or `DAMN' architec-

ture [Rosenblatt, 1995, Rosenblatt and Thorpe, 1995] is a pandemonium-like

model for Action Selection. Agents vote for actions, and the action which

receives the most votes is executed. The action selection method is similar to

Maximize Collective Happiness. Agents must share the same suite of actions,

and be able to provide votes for actions other than their �rst choice. To �nd

the best action to execute, the creature calculates the equivalent of:

max

a2A

"

n

X

i=1

w

i

Q

i

(x; a)

#

where the w

i

are a set of weights reecting which agents are currently

priorities of the system. The idea is that these weights can be used to ad-

just the strength of an agent relative to its fellows to avoid the pitfalls of

a collective method, such as inability to be single-minded (x12.3). But one

couldn't multiply all of A

i

's Q-values by the same weight, as we saw in x9.1.

We need w

i

(x), a weight speci�c to the state. Rosenblatt acknowledges this,

and suggests the w

i

weightings can be changed dynamically as the creature

moves through di�erent states x. But he has no automatic way of generating

these weights. This is all part of the burden of hand-design.

The utility theory developed in [Rosenblatt, 1995] develops a hand-designed

equivalent of a static W = importance scheme (as in x5.4), where the agent's

vote for an action is calculated relative to all alternative actions. One di�er-

ence is that the agent has a vote for every action W (x; a). His normalised

equation:

U

b

(c) = (g

b

(c)� g

min

)=(g

max

� g

min

)

is the equivalent of the normalised equation:

W (x; a) = (Q(x; a)�min

b2A

Q(x; b))=(max

b2A

Q(x; b)�min

b2A

Q(x; b))

129

There is a special case where the denominator is zero (all Q-values are

the same) but then the numerator is zero as well. We would just set W = 0.

The trouble with the above measure is that we are really only interested

in the best Q-value, for which W (x) = 1 always. We could do a dynamic

form of scaling perhaps:

W

i

(x) = (Q

i

(x; a

i

)�Q

i

(x; a

k

))=(max

b2A

Q

i

(x; b)�min

b2A

Q

i

(x; b))

but it is unclear what the advantage would be. If we multiply the Q-

values by a constant, the W-value would remain unchanged. We have no

easy mechanism for making agents stronger or weaker. The argument against

scaling was presented in x8.1.

15.4.6 The BSA Architecture

The Behavioral Synthesis Architecture [Aylett, 1995] is another example of

hand-designed utility functions for behaviors. For example, Aylett's behavior

pattern equation:

bp

t

= fr

t

= f

r

(s

t

)g; fu

t

= f

u

(s

t

)g

is equivalent to the agent being able to generate for any x an action and

an associated utility:

fa = a

�

(x)g; fQ = V

�

(x)g

The action selection is similar to Maximize Collective Happiness. Again,

the di�erence is that these numbers are all designed by hand.

15.4.7 Drives

As was mentioned when it was introduced (x5.2), our basic model of parallel

internal competition is a form of drives model from ethology. Here the dif-

ference is we provide an answer to the question of where the drive strengths

come from.

15.4.8 Tyrrell

Implementing a W = D � F measure is essentially what Tyrrell is trying

to do in his parameter tuning to get an implementation of drives working

130

[Tyrrell, 1993, x9.3.1]. The amount of hand-design he needs to do only points

out the value of self-organisation of these numbers.

For example, if a predator is visible he designs his `Avoid predator' drive

to have a high drive strength (it must be listened to). If no predator is visible

he gives it a low drive strength (it doesn't matter if it is not listened to).

When avoiding a moving predator, the predator-avoiding agent A

p

must

be listened to precisely (the creature must move in exactly the opposite di-

rection). When avoiding a stationary hazard, any action is alright so long as

it isn't the one action in the direction of the hazard. So it doesn't matter if

the hazard-avoiding agent A

h

is not listened to if other agents don't want to

go in that exact direction anyway.

Under W-learning, these numbers would have been built automatically.

A

p

would learn a high W-value if (as probable) other agents wanted to do

anything else other than move away from the predator. A

h

would know that

only that particular direction was bad, and would learn a low W-value (would

not compete) if other agents were going in some other direction anyway.

In [Tyrrell, 1993, x11.1.2], Tyrrell's hierarchical decision structure imple-

ments a form of Maximize the Best Happiness, while his free-ow hierarchy

implements a form of Maximize Collective Happiness.

15.4.9 Modular Q-learning (University of Rochester)

Work at the University of Rochester [Whitehead et al., 1993, Karlsson, 1997]

addresses the same question as this thesis - given a collection of competing

peers, who should win? Their nearest neighbor strategy is e�ectively Maxi-

mize the Best Happiness (W=Q). Their greatest mass strategy is Maximize

Collective Happiness. A Minimize the Worst Unhappiness strategy was not

tried.

[Karlsson, 1997] argues that a modular approach learns a sub-optimal

policy quicker and with less memory than a monolithic approach. While this

is true, I further point out that the monolithic approach may not even learn

the optimal policy itself.

[Ono et al., 1996, x2], in their implementation of greatest mass, imple-

ment exactly the Maximize Collective Happiness strategy.

15.4.10 W-learning

For completeness, I point out which category this work itself belongs to. In

their basic form, W-learning and related strategies are standard, one-layer,

parallel models. x18 will show how they can scale up into more complex

forms of societies, still self-organising.

131

15.5 Classi�er Systems

Finally we consider other related work which looks to be relevant but on

closer examination may not be quite so relevant.

In this thesis we have agents with reward functions of the form:

if (condition) then reward r

1

else reward r

2

and we use a genetic algorithm to search through di�erent combinations

of r

1

and r

2

. This may remind some of classi�er systems [Holland, 1975],

which run genetic search on production rules of the form:

if (condition) then execute (action)

The comparison is misleading. In this thesis we are not searching the

space of reward function rules. We are not inventing new reward functions,

only modifying the strengths of the existing ones. All we are doing is testing

all di�erent possible parameters - something any good empirical test has to

do.

The classi�er system rule operates at the low level of actually specifying

behavior. The reward function rule operates at a higher level of specifying

a value system, that must be translated into behavior. In this thesis I have

been content to hand-design the reward functions and let the behavior be

learnt from them. The genetic search on the reward functions' parameter

values is then actually a search for di�erent combinations of weak and strong

agents. We will return to this in x17.2.

Note that classi�er systems are really searching through rules of the form:

if x then execute a

They are solving the Q-problem, not the W-problem.

15.5.1 Grefenstette

Grefenstette's SAMUEL system [Grefenstette, 1992] uses competition among

agents, where an agent (or strategy) is a set of rules.

1

A rule is of the form: IF

(condition) THEN suggest (set of actions with strengths). Hence

`strength' here is the equivalent of a Q-value for the action. One di�erence

with Q-values is that Grefenstette looks for high expected reward and a

low variance in those rewards. Q-learning just looks at expected reward

irrespective of variance.

1

Note that Grefenstette himself uses the word agent to refer to the whole creature.

132

`Competition among strategies' however turns out to mean only a genetic

search for good strategies to solve the same problem, deleting the bad ones,

and mutating good ones. There is no competition between two stategies in

the same body at run-time which is what competition between agents means

in this thesis. In other words, Grefenstette uses competition as a device to

solve the single-goal Q-problem, rather than it being an unavoidable run-time

feature of the problem, as it is in the multi-goal Action Selection W-problem.

A rule �res when its condition is met - which would seem equivalent to

the rule representing the Q-values for a particular state x. An important dif-

ference though is that the conditions can be quite general, for example some-

thing like: IF fuel=[low or medium] AND speed=[600 to 800] THEN...

So a rule builds up the equivalent of Q-values for actions in a region of states-

pace. These regions may overlap. That is why multiple rules may �re at the

same time - something that cannot happen if rules are of the form IF x

THEN.. where each x is a unique state. For states x lying in overlapping

regions, there will be multiple estimates of Q(x; a).

15.5.2 Product Maximize Collective Happiness

Grefenstette's method of dealing with conicting suggestions is interesting

because it can be adapted for use in the Action Selection problem (which

he does not address). It is a Maximize Collective Happiness strategy, but

instead of summing the Q-value-equivalents (as in x12.1), it multiplies them.

His two bids (suggested actions with strengths) of:

(right(0.9),left(0.4))

(right(0.8),left(0.9))

Are combined to give a bid of:

(right(0.72),left(0.36))

So the action \move right" is chosen for execution. This is the equivalent

of having two agents with Q-values:

a (R) (L)

Q1(x,a) [0.9] 0.4

Q2(x,a) 0.8 [0.9]

133

To select an action for execution, we calculate:

max

a2A

[Q

1

(x; a)Q

2

(x; a)Q

3

(x; a) : : : Q

n

(x; a)]

As before this may produce compromise actions, that none of the agents

would have suggested. This method requires agents to share the same suite

of actions. Note that we can't implement this method if Q-values can be

negative or close to zero. Consider agents with Q-values:

a (1) (2) (3) (4)

Q1(x,a) 0.9 0.1 -0.2 0.9

Q2(x,a) 0.9 0.1 -0.2 0.9

Q3(x,a) 0.9 0.1 -0.2 0.9

Q4(x,a) 0 0.1 -0.2 -0.1

Using a naive product method of Maximize Collective Happiness, action

(3) will be chosen, strangely enough. Action (1) doesn't get chosen because

the 0 cancels out the 0:9's. Action (4) doesn't get chosen because the �0:1

makes the product negative. And then action (3) beats action (2) because

the minus signs cancel each other out.

Obviously, we must make all Q-values positive, which is accomplished by

making all rewards positive (Theorem B.2). Q-values arbitrarily close to zero

can still cancel out an entire column, but perhaps this is alright, since if all

rewards are > 0, a Q-value very close to zero means the action will not only

give the agent no reward but also take it to a state from which nothing it

can do can expect to bring it a reward for quite some time into the future.

So perhaps it is right that the agent vetoes this action. Note that in the

example above it is not good that the 0 vetoes the action because action (1)

is actually quite a good action for agent A

4

!

This method of Action Selection will still su�er though from the draw-

backs of any collective approach, as discussed in x12.3. In a crucial state for

it, one agent can get drowned out by the sheer weight of numbers of other

agents, none of whom care very much about this state:

a (1) (2) (3) (4)

Q1(x,a) 2.5 0.1 0.1 0.1

Q2(x,a) 0.1 0.3 0.3 0.3

Q3(x,a) 0.1 0.3 0.3 0.3

Q4(x,a) 0.1 0.3 0.3 0.3

Here, agent A

1

is drowned out and action (1) is not taken. Note that

the summation method of Maximize Collective Happiness would have chosen

action (1) in this case.

134

15.5.3 The Economy of Mind

Baum [Baum, 1996] introduces an Economy of Mind model (\A Model of

Mind as a Laissez-Faire Economy of Idiots"), where new agents can be created

dynamically, and agents that do not thrive die o�.

An \agent" here though is simply a rule (a condition-action pair). There

is a single goal, and the economy selects agents over time to �nd a set of

rules that best satisfy that goal. That is, as with Grefenstette (x15.5.1),

competition here is a device to solve the single-goal Q-problem, rather than

referring to the run-time competition of the W-problem.

There are large numbers of these simple agent-rules (in one typical run,

at any given time between 20 and 250 agents were alive). Agents pay for

the right to take an action (they pay the previous winner). When an action

is taken only the winner receives a reward. So an agent pays to win, but

then receives two payo�s - one from the action it takes, and one in the next

step when it is paid o� by the next winner. What it pays should be less

than or equal to on average what it receives, otherwise it will eventually be

bankrupted and deleted. The agent who expects to gain the largest rewards

by taking its action will outbid the others.

But these bids are not analogous to W-values. They are an estimate of

expected reward, used to control the entry of new rules. New agents can only

enter and thrive if their estimates are more accurate. Bids are analogous to

Q-values - they are a way of learning estimates of reward in pursuit of the

single goal.

It would be interesting to extend Baum's model to the Action Selection

problem. `Agents' do not actually have to be simple condition-action pairs.

The concept of bidding and paying for actions can still be applied even when

the agents are our Q-learning agents pursuing di�erent goals. In a strict eco-

nomic model, though, agents would have no interest in letting other agents

take their actions for them, since they won't receive the reward if that hap-

pens. Agents wanting to do exactly the same thing will still bid against each

other. And when agents want to do similar but not exactly the same things,

there can be no concept of compromise. An agent either receives its full

reward or nothing. The system would seem to be incapable of opportunism.

Perhaps we should relax the strict economic analogy and allow all agents

to pro�t if one of them does good.

135

15.6 Operating Systems Theory

An interesting comparison can be made between how control switches in a

W-learning creature and in an Operating System. Operating Systems im-

plement a sort of time-based action selection (recall x15.1.1), but di�erent

assumptions make OS ideas di�cult to apply to our problems.

Agents get CPU time for some time slice. There is no concept of whether

or not this is an appropriate state x for them to take over. Agents can be

given a priority, which gets them more frequent timeslices, but still indepen-

dent of x, although the concept of priority for mouse and keyboard responsive

routines could be seen as a simple form of priority based on x.

There seems no way to express the loss an agent su�ers by not being

obeyed as being dependent on x and on who was obeyed. In an Operating

System all losses are assumed the same - the agent just has to wait some

time. There is also no concept that a non-winner can pro�t from what the

winner is doing.

15.7 Ethernet protocols

Another interesting comparison is with how the Ethernet

[Metcalfe and Boggs, 1976] works. In an ethernet, stations only transmit

when they �nd the Ether is silent. When multiple stations transmit at the

same time, a collision occurs and they back o� at di�erent rates, so that one

will be left to transmit while the others defer their transmission. When the

winner is �nished, the others will start up again. It has been compared to a

civilized meeting where if someone wants to speak they raise their voice and

everyone else quietens down.

In W-learning, agents raise their voices (W-values) to be heard, but if

the lead is taken by an agent favourable to their plan of action they will be

found lowering their voices again. At any moment, all agents may have low

W-values, but only because they are all happy with the current leader.

For example, in our arti�cial world, when no interesting features of the

world are visible, almost any agent with a `wander'-type behavior can take

control relatively unopposed. In fact, the wander behavior may be split

among a number of agents, depending stochastically on which got into the

lead �rst in each state.

136

15.8 Game Theory

Interesting examples of competition can be set up where an agent can do

well if it is sel�sh, but even better if it cooperates, so long as the other agents

cooperate too. Such problems include the Prisoner's Dilemma.

In our model, an agent always does best when it is sel�sh and is normally

expected only to do as well or worse when it is not obeyed. While action

selection here is not exactly a zero-sum game - nonobeyed agents still col-

lect rewards up to and sometimes equal to their highest possible - the best

strategy for an agent is still always to try to be obeyed.

A more complex strategy might be if the agent accepts it can't win, but

has the choice of saying who it would support to win instead. If it votes

for a winner and votes are added, though, we might again run the risk of

the collective methods, where sheer weight of numbers can drown out an

unpopular minority opinion.

15.9 Economic Theory

The problem of reconciling independent wills in a society is an old problem

of economic and political theory. Because of di�erent assumptions though,

much of the work is not easily transferable to the Society of Mind.

In economics, utility [Varian, 1993, x4] is used as a way of ranking an

agent's preferences. It can be seen as analogous to Q-values for actions. In

the standard ordinal utility theory, the precise numbers are not important.

What matters is only the order in which things are ranked. This is analogous

to a single Q-learning agent on its own. It is interesting how di�cult it

often is to �nd such an ordering in economics. Many apparently arbitrary

functions are used, once the requirement is dropped that the precise numbers

be meaningful.

In cardinal utility theory some meaning is attached to the numbers. The

utility of some choice can be said to be twice that of another, and so on.

Here we can introduce an analog of W-values, where the di�erence between

the Q-values is measured. We can ask the question: `You want choice A. If

we force you to take choice B, how bad is that?'

Welfare theory [Varian, 1993, x30] is the branch of economics with the

most relevance to this thesis. Welfare theory makes ethical judgements about

what kind of economic society we want, and suggests various social welfare

functions to be optimised. We have noted in the text that some of our action

selection methods are equivalent to optimising the following social welfare

functions:

137

� The classic utilitarian or Benthamite social welfare function (the great-

est happiness for the greatest number) is equivalent to Maximize Col-

lective Happiness (see x12.1).

� A \Nietzschean" social welfare function (the value of an allocation de-

pends on the welfare of the best o� agent) is equivalent to Maximize

the Best Happiness (see x9).

� A Rawlsian social welfare function (the value of an allocation depends

on the welfare of the worst o� agent) is a Minimize the Worst Unhap-

piness method, though not quite the one that we use (see x13).

Rawls sides with his agents, and takes note of their individual stories, out

of ethical concern for their unhappiness. We side with ours not because we

`care' about them (they are only parts of the mind) but because we want

individual agents to have the ability, when they really need it, to raise their

voices and be heard above the others.

One considerable di�erence between the Society of Mind and economic

societies is that economic agents don't bene�t from someone else's success.

They won't be happy to see another win if they could have won themselves.

15.10 Political Theory

The problem of reconciling independent wills has also of course long been

addressed by political theory, although here the focus tends to be on rights

and freedoms rather than on wealth. In fact, the analogies with our systems

of action selection are even stronger:

� The Collective methods are analogous to old-fashioned majority-rule

democracy (or `majoritarianism'). This is a simple majority vote where

minority rights can be ignored.

� W-learning is analogous to liberal democracy, where the test of a democ-

racy is how well it treats its minorities. Liberal democracy here is the

attempt to minimize individual hard-luck stories. Journalism in a lib-

eral democracy focuses endlessly on individual problems and individual

denials of rights, rather than focusing on the majority or the common

good. A single individual's denial of rights can change the law for the

whole population.

� W=Q is analogous to anarchy, which is survival of the �ttest, where no

one is safe. Anarchy here means that individuals can trample on your

138

rights, analogous to how the winner in W=Q will not compromise with

anyone.

This is summarised in Figure 15.1. Note that an authoritarian system

would not be on this scale since it would not involve action selection at all -

there would be a constant winner independent of state x. In an authoritarian

system, a strong agent wins all states x. In W=Q (anarchy), strong agents

win, but di�erent ones in each x.

What is good for the Society of Mind of course may not necessarily be

good for the Society of Humans, and I have no interest in making any state-

ments about the latter. I think it would be uncontroversial though to say

that, whether one is in favour of it or not, liberal democracy is a more com-

plex idea than simple majority-rule democracy, which is perhaps why the two

are often confused even in much of the democratic world.

2

Similarly in ac-

tion selection, Minimize the Worst Unhappiness is a more complex idea than

Maximize Collective Happiness, which is why perhaps it has been generally

overlooked. In the action selection methods in this chapter, we have noted

the recurring popularity of Maximize Collective Happiness schemes.

So whatever about the Society of Humans, this thesis argues that the

Society of Mind (or at least our �rst draft of a Society of Mind) should

probably be a liberal democracy.

2

For example, in Northern Ireland `democracy' is repeatedly assumed to mean simple

majority-rule democracy (with the opposing sides de�ning di�erent territories over which

to take the majority vote). I am not, of course, saying there is anything right or wrong

with any particular model of society, but only noting that people confuse their terms.

139

Maximize Best
Happiness
(W=Q)

Minimize Worst
Unhappiness
(W-learning)

Maximize Collective
Happiness

Minimize Collective
Unhappiness
(Collective W-learning)

anarchy liberal democracy democracy

individual freedom

Figure 15.1: Political analogs of the action selection methods. Note that

individual freedom is not identical to individual happiness.

140

Chapter 16

Conclusion

16.1 Empirical results

Looking at the summary of empirical results in x14, we note that Q-learning

and Hierarchical Q-learning were outperformed by methods that do not refer

to the global reward. How could this be? One can see the advantage of self-

organising methods if we can't (or don't want to) design an explicit global

reward function. But surely if a global reward exists, you can't do better

than learning from it.

The answer is that yes, in a Markov Decision Process with lookup tables

you can't do better than learning from the global reward. But if the world

was that simple, Q-learning would do �ne and we wouldn't even be interested

in Hierarchical Q-learning let alone any of the self-organising, decentralised

methods. It's because we are not in such a simple world that Q-learning

(and indeed Hierarchical Q-learning too) can be beaten. [Lin, 1993] has

already pointed out that the reason Hierarchical Q-learning beat Q-learning

was because Q-learning could not learn the optimal solution in its neural

network.

Q-learning and Hierarchical Q-learning su�er from a similar aw to the

Collective methods (x12.3) - they will tend to lose minority agents. Because

they use a generalisation, when a reward comes in as part of the global

reward function it a�ects the values of other (x; a) pairs. Small or infrequent

rewards can get drowned out by the pursuit of large or frequent rewards. The

generalisation learns a cruder policy than is possible with say Negotiated W-

learning. It is liable to optimise only the one or two main components of the

global reward.

In the self-organising methods, we devolve powers to the agents them-

selves, allowing rarely used and normally-quiet agents to rise up and take

141

over at crucial, but infrequent, times. Agents can spot better than global

functions opportunities to pick up rewards, so devolving power to the agents

is a better strategy for keeping them all on board. Minimize the Worst

Unhappiness (W-learning) can listen to individual stories in a way that Q-

learning and Hierarchical Q-learning cannot.

It is interesting that even simple W=Q was better than Hierarchical Q-

learning here. That large statespace is the problem, and Lin hasn't found

a way of getting rid of it. It does seem wrong that there should exist such

a structure, for what does it mean? Is it not merely a number of unrelated

observations from di�erent senses combined together. In Tyrrell's Simulated

Environment [Tyrrell, 1993] the full space would have to be of size 10

100

.

Across all our methods, those huge full spaces are mostly wasted. The two

best methods were both with tiny subspaces.

Some of the results were as expected. As expected, NegotiatedW-learning

was better than W-learning with full space, which itself was better than W-

learning with subspaces. W-learning with full space is more accurate than

with subspaces, but the neural network means we can't get full accuracy.

Negotiated W-learning �nally delivers full accuracy.

Also as expected, the results support Lin's basic �nding of the advantages

of Hierarchical Q-learning over Q-learning.

Finally, while the experiments clearly support decentralisation of some

form, there are a number of reasons why they are inconclusive as to what are

the very best methods. First of all, the pure version of Minimize the Worst

Unhappiness would probably have outperformed Negotiated W-learning and

been the best method of all had it been tested. W-learning with full space

would probably have performed better than it did had we used a declining

Boltzmann for W instead of random W winners (see x10), and so would

probably have been next up after these two. Of course these two require

agents to share a common suite of actions. If agents don't share actions, W-

learning with full space might be the best method. The simple, static W=Q

method performed very well, but probably only because opportunism is not

important enough in this world (see x9.1). If we were to increase the bene�ts

of opportunism, we might see static W=Q drop to the level of W-learning

with subspaces - the two low-memory, inaccurate-competition methods.

16.1.1 Hand-coded programs

The �nal comment on the experiments is that it is remarkable how di�cult

it is to hand-code the goal interleaving necessary to perform well in this

world. The solutions generated by learning are far superior, though di�cult

to visualise or translate into a concise set of instructions.

142

In the much simpler Ant World problem, W-learning with subspaces

performed similar to hand-coded programs (see [Humphrys, 1995]), and the

statespace was small enough to map, so we could translate the winning strat-

egy into a set of rules (as in x7.1).

In the more complex House Robot problem, hand-coded solutions are

far inferior, and at the same time the statespace is too big to map so it is

di�cult to analyse how the good solutions actually work. Since it is hard to

enumerate all the states and see what the system does, it is hard to translate

our solution into a concise program. When comparing a state-space versus

a set of thousands of IF .. THEN .. rules, one might as well stay with

the state-space - it is hardly less comprehensible.

16.2 Related work

A general comment about the survey of related work (x15). It would be easier

to compare action selection methods if the two problems, the `Q-problem'

and the `W-problem', were not mixed together. Some of the problems that

various action selection methods try to solve are in fact solved by standard

methods for single goals, such as short-term loss for long-term gain, which is

solved by basic Q-learning (x2.1.6). One can't expect one mechanism to do

everything. For larger systems, we must separate Q and W or we will drown

in complexity.

In fact, it would be helpful if there was a more standard terminology - if

all authors, irrespective of whether their scheme was hand-designed, learnt

or evolved, used say Q(x; a) for goodness/�tness/utility of an action relative

to other actions in an ideal world where the agent acts alone, and W (x) for

strength/bid relative to the other agents.

16.3 Searching for the best solution relative

to some global score

For the four new methods that we tested in this work (the `global reward

function - free' methods) we ran a Genetic Algorithm search on combina-

tions of rewards r

i

, and compared the best solution found by the GA with

the solutions found by Q-learning and Hierarchical Q-learning (see xG for

summary of all experiments). Is this unfair? It looks as if we are doing more

parameter-tweaking with the four methods than we allowed for Q-learning

and Hierarchical Q-learning.

143

First of all, remember that here we are trying arti�cially to compare all

the methods on the same scale. So even though the four methods do not

need a global reward function to organise their action selection, we still must

search for combinations that happen to organise well according to the global

reward function's judgement if we are to compare them directly to Q-learning

and Hierarchical Q-learning.

Imagine that we have no explicit global reward function. The four meth-

ods organise with reference to local rewards only, and then we will have

some judgement about the �nal creature. There are three possible strategies

of searching for well-balanced combinations:

Strategy 1 - Run an automated search using a standard GA with an explicit

global �tness function.

Strategy 2 - Run an automated search in an open-ended Arti�cial-Life type

experiment where �tness is implicit in the environment.

Strategy 3 - Observe the actual behavior and then use human judgement

to adjust the broad strength of particular agents up and down (recall

x8.1.3). The agents still work out the details of the action selection

themselves.

In some ways, Strategies 2 and 3 are a search for the global reward function

itself. Global reward functions don't come out of thin air, and just because

Q-learning and Hierarchical Q-learning have maximized one doesn't mean

that the resultant creature has the balanced behavior you want.

Further experiments could be done using Strategies 2 and 3. Using Strat-

egy 1 in this work was good from the point of view of a fair comparison, but

bad from other points of view. It gives the impression that a perfect global

reward function will normally exist (and hence that we can use Q-learning

and Hierarchical Q-learning at all). It also gives the impression that if there

is such a function, the four methods take more e�ort to learn from it than

Q-learning and Hierarchical Q-learning do (a full GA search - essentially a

search to re-�nd the global function again). But we didn't have to use a GA

- we could have used Strategy 3. The decision not to was again for reasons

of a fair test (see x8.2).

16.3.1 The Adaptive Landscape

Further work could be done with Strategy 1 as well, to analyse the nature

of the adaptive landscape that it is exploring. It would be interesting to see

144

how sensitive the performance of the creature could be to small changes in

the relative strengths of its competing agents.

The landscape here is hard to illustrate since it is a 9-dimensional surface

(8 parameters leading to 1 �tness value). Certainly there could be sharp

cli�s on the landscape - there could be some state x which a speci�c agent A

i

must win if the creature is to be remotely adaptive. At the boundary where

A

i

is just too weak to win the competition for x, there will be a sharp change

in the �tness value. A sharp peak on the landscape might be less likely than

a cli�.

Informally, the search space for the GA seemed fairly tractable. The best

solutions found levelled o� quite rapidly, while the population was continuing

to explore diverse points (i.e. this was not simply quick �xation of the whole

population at a single local maximum).

More formally, the only proper analysis of the adaptive landscape during

this work was, ironically, for the case of the W-learning with subspaces in x4.1

of [Humphrys, 1996] where a badly-designed global reward function caused

the optimal behavior to be to jump in and out of the plug non-stop.

1

For what it's worth, here is an illustration of that landscape. The global

reward function was the same as in x4.3.1 except that arrival at the plug

scores 1 point. This allowed scores of up to 29.590 points per 100 steps to

be achieved. Figure 16.1 shows how quickly the GA �nds good solutions.

To try to understand whether good solutions are clustered together or

scattered on narrow peaks, we need some measure of distance between two

solutions where solutions are n-dimensional vectors. The Euclidean distance

metric provides such a measure. Here, given some combination of rewards

c = fr

1

; r

2

; : : : ; r

n

g, the Euclidean distance of this from another combination

of rewards c

0

= fr

0

1

; r

0

2

; : : : ; r

0

n

g is:

d(c; c

0

) =

v

u

u

t

n

X

i=1

(r

i

� r

0

i

)

2

Figure 16.2 shows the Euclidean distance of all solutions relative to the

single best solution f0:93; 0:34; 0:47; 0:08; 0:47; 0:74; 0:34; 1g, which scored 29.590.

It seems clear that there are multiple peaks with near-optimal solutions - al-

though there is still some kind of downward slope as you get very distant

from the best point, so the multiple peaks are to some extent in the same

general region of space.

1

Remember that our suggested cure for problems like this in designing global reward

functions is to do away with the global reward function altogether.

145

-60

-40

-20

0

20

0 2 4 6 8 10 12 14

fitness

generation

Figure 16.1: The average �tness of the population for each generation of evo-

lution. The errorbars show the best and worst individuals in each generation.

In fact, we can see that the global maximum cannot be a single point,

it must be a ridge. Simply multiply all rewards by the same positive con-

stant and all W-values are multiplied by the constant and the competition

is unchanged. If W

i

(x) < W

k

(x), then cW

i

(x) < cW

k

(x). We get a combina-

tion with an identical resolution of competition, and hence identical �tness,

but at a di�erent point in space (at a di�erent Euclidean distance). For

example, f0:093; 0:034; 0:047; 0:008; 0:047; 0:074; 0:034; 0:1g would have iden-

tical �tness to the best combination here. Figure 16.2 is probably not a good

way to illustrate the landscape then, since for any high �tness point we can

easily �nd points of similar �tness at high Euclidean distance from it.

Confusing as this n-dimensional �tness landscape may be, it is the au-

tomated search program's job (Strategies 1 and implicitly 2) to navigate it.

The searching by hand strategy (Strategy 3) does not deal with a �tness

landscape at all, but rather observes behavior.

146

-60

-40

-20

0

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

fitness

Euclidean distance from best point

Figure 16.2: A plot of all combinations of rewards tested, showing the �tness

of each combination plotted against its Euclidean distance from the single

best combination.

147

16.4 What global policy have we learnt?

An agent presents certain Q-values not necessarily because of immediate

reward but also because of what is a few steps away. So it may not be much

use to the agent to get obeyed now if it won't get obeyed after that and never

picks up the reward. Is it possible that in our action selection schemes, an

agent is �ghting for a state only to never see the long-term rewards that were

the reason it wanted the state in the �rst place?

Say we want to maximise, as the global �tness function for the whole

creature, the sum of rewards at each timestep:

X

i

r

i

!

t

+

X

i

r

i

!

t+1

+

2

X

i

r

i

!

t+2

+ � � �

Strangely enough, this does not translate into picking the sum of the Q-

values each timestep. Because an agent's Q-value expresses what the agent

expects if it takes action a and thereafter follows its own policy. For example,

an agent might need to go down a path of a few steps to get its reward:

Q

i

(x; a) = 0 + 0 +

2

r

So if we follow this agent for under three steps and then switch control,

the sum of rewards it contributes will actually be zero. Maximising (

P

i

r

i

)

t

only translates to maximising

P

i

Q

i

for the special case = 0. In general,

the sum of the agents' Q-values is a meaningless term because it expresses

expected reward if a number of di�erent policies are followed simultaneously:

X

i

Q

i

(x

t

; a

t

) =

X

i

�

(r

i

)

t

+ (r

i

)

t+1

+

2

(r

i

)

t+2

+ � � �

�

Maximising this sum of the Q-values may not lead to maximising the sum

of the rewards - it may just lead to dithering. As we put it in x12.3, it's the

whole creature equivalent of going for short-term gain at the expense of long-

term loss. The problem arises because agents' Q-values are being optimistic

about what happens if they are obeyed. For instance, agent A

1

is near its

goal. If obeyed, its Q-value is r, if not r since it can be obeyed on the

next step. The other agents are miles away from their goal. If obeyed, their

Q-value predicts

n

r since it is being optimistic that the agent's policy will

be followed for n steps afterwards, which of course it won't be. If disobeyed,

their Q-value is

n+1

r:

148

a (1) (2)

Q

1

(x; a) r r

Q

2

(x; a)

n+1

r

n

r

Q

3

(x; a)

n+1

r

n

r

Q

4

(x; a)

n+1

r

n

r

� � � � � � � � �

If there are enough other agents, Maximize Collective Happiness will take

action (2) and A

1

will never see its reward. If there is a similar pro�le for

all the agents - with all of them wanting to go down paths that none of

the others want to go down - then the same thing will happen to them when

they try to get their rewards. Maximize Collective Happiness, following those

optimistic contradictory Q-values, will always dither and never pick up any

actual rewards. The sum of rewards will be zero, even though we appear to

be following the Q-values.

16.4.1 How do we maximise the ongoing sum of re-

wards?

If we want to maximise the sum of the rewards, the �rst solution is of course

to simply go back to a global reward function and a monolithic Q-learner,

where the reward each time step is

P

i

r

i

. Another solution (discussed in

[Whitehead et al., 1993]) is to use a model to predict what state our Action

Selection policy will lead to next, what decision Action Selection will take

then, what state that will lead to, and so on. Or the Q-values, so as not

to be so misleading, would start to express the expected reward given how

we expect to be obeyed in the future (i.e. we lose the idea of the Q-value

expressing something independent of the collection). Alternatively, perhaps

we should give agents control for a minimum number of timesteps.

None of these methods is very satisfactory. In this thesis we can o�er in-

stead a local-information, model-free solution whereby it is a property of the

action selection mechanism that chains of actions from the same agent are

likely to be followed and consummated. x15.1.3 showed how Minimize the

Worst Unhappiness implements an automatic, positive-feedback, persistence

mechanism whereby an agent that wins a state will be even more likely to

win the next state, and so on until its reward is achieved. There is much

interruption, but it is more likely at some moments than at others. Goals

are followed and the promised rewards do tend to be picked up before inter-

ruption. Note that W-learning would have allowed A

1

to reach its reward in

149

the example above. It would have a much higher W-value than any other

individual.

Our four approaches to action selection all decide competition based only

on the current state x and the Q-values the agents have for x.

[Whitehead et al., 1993] call this a simple merging strategy, but are too quick

to move on to more complex methods without considering what properties a

Minimize the Worst Unhappiness simple merging strategy could have.

16.4.2 What the Global reward function cannot ex-

press

So we have argued that Minimize the Worst Unhappiness is the best way of

maximising the ongoing sum of rewards for the whole creature using local

information only - and hence the best way of maximising the sum of rewards

at all, since monolithic methods are impractical.

Now we argue that the sum of rewards, or even any linear combination

of them (like the global reward function in x4.3.1), cannot fully express the

behavior of the whole creature that we want. Because we don't want to

see this global score maximised if the solution drops any individual subgoal.

We want a good score according to the global reward and at the same time

ensure that all subgoals are at some time attended to. This is what is hard

to express within the RL framework.

It is di�cult to express this constraint in a P

xa

(r) distribution which only

considers the current state x. It is also di�cult to express this constraint

when we use the global reward function, as we did here, as a �tness function

for a GA, generating a single numeric �tness score. If we want to make sure

that every subgoal is attended to, we need to use Strategies 2 or 3 of the

previous section, not Strategy 1.

But where does that leave the empirical results of this thesis? We're

arguing that maximising the global reward function of x4.3.1 does not de�ne

completely how we want the creature to behave. But we argued in favour

of our methods because of their success in maximising this global reward

function.

In defence of this, �rst, we presented various examples and analysis to

show that our methods will actually take care of individual subgoals where

other methods will not. Also, we argued that in this case the reason our

methods performed well on the global reward was in fact because they picked

up rewards from all the subgoals, whereas monolithic methods learnt a cruder

policy. And �nally, just because the global test was awed doesn't mean that

the other methods would have performed better under a more ideal global

150

test. Our analysis suggests they would have performed even worse.

It still shows that the comparison of the methods was not ideal though.

We used Strategy 1 so that all methods would have a fair comparison. But

this was still somewhat unsatisfactory because we lack a way of explicitly

penalising methods that ignore subgoals.

151

Chapter 17

Further work

Finally, we examine possible further work to consider where this approach

to action selection is leading.

17.1 Further empirical work

This thesis may look like some kind of de�nitive empirical comparison of these

methods but it is in fact far from the last word. The real contribution of this

thesis is to invent these methods in the �rst place, show their motivation,

their expected strengths and weaknesses, place them in context relative to

each other, and show how the initial empirical results support what the

theory would predict. There are a number of untested methods (though

their expected performance has been discussed in the text):

� Untested methods that we expect to be useful

{ The pure Minimize the Worst Unhappiness when actions are shared

(x13).

{ W-learning with full space with a declining Boltzmann distribu-

tion for W instead of random W winners (x10).

� Untested methods that we do not expect to be interesting

{ Other static measures of W, such as W = importance (x5.4). We

expect them to have the same problem as static W=Q, of not

being able to take opportunities (see x9.1).

{ Any scaled static or dynamic measures of W (x8.1.2,x15.4.5). These

won't provide any advantage because we do not want to �x agents'

inequalities relative to each other (see x8.1.2).

152

{ The Collective methods (x12). [Whitehead et al., 1993] found that

Maximize Collective Happiness performed not much di�erent from

W=Q (while both were better than monolithic Q-learning).

{ The product method of Maximize Collective Happiness (x15.5.2)

- once the correction is made that rewards (and hence Q-values)

are all made > 0.

{ The standard deviation method of Maximize Collective Happiness

(x12.4).

The arti�cial world I used increased in complexity throughout the thesis,

but as was revealed in x9.1, still proved too simple to properly separate the

two approaches of Maximize the Best Happiness and Minimize the Worst

Unhappiness. To properly contrast the two approaches, they need to be

tested in an environment in which the rewards of opportunism (and the

costs of not being opportunistic) are greater.

When testing the Collective methods, the world should also be one where

some agents have non-recoverable states. This world probably doesn't have

enough such states. If not obeyed at some point, an agent can almost always

recover its position within a small number of steps.

As just discussed in x16.4.2, the de�nitive empirical test probably needs

more than just a global �tness function as a linear combination of rewards.

It should also include an explicit penalty for solutions that ignore subgoals.

17.2 Scaling up Reinforcement Learning

In scaling up Reinforcement Learning to complex problems (such as robot

control), ways of breaking up the problem and its statespace are clearly

needed. The problem is normally phrased (e.g. see [Kaelbling et al., 1996])

as that of task decomposition - breaking up the problem into subtasks that

must be achieved in serial or in parallel.

It would be misleading to see this thesis as providing a solution to the

general problem of decomposing problems into sub-tasks. Rather, its contri-

bution is, given a collection of agents, �nd automatic ways of resolving their

competition so that they can share the same creature in a sensible man-

ner. Once put together, the agents in W-learning automatically �nd each

other's weak spots, and discover the areas on which they can and cannot

compromise.

Then the problem becomes one of designing a suitable collection of agents.

This is not at all trivial, but it is hoped that it will be easier than designing

the details of their action selection. We do have some rules of thumb to

153

help in designing these collections - for example, to increase the inuence of

an agent in the creature's mind, slowly increase the di�erences between its

rewards (recall x8.1.3).

This system has the property of being able to `absorb' change - increasing

an agent's strength doesn't guarantee that it will do better in every single

state. In some states, a change of leader might reawaken a dormant agent,

who suddenly �nds that the agent that used to �ght its battles for it is

no longer winning. In other words, an agent increasing its strength will be

unlikely to suddenly ruin all the other agents. They will give up their ground

slowly, giving up less important states but holding on to the end to their

crucial states. This is all done automatically.

The promise of RL is that designing a reward function will be easier than

designing the behavior itself. Similarly, in addressing the Action Selection

problem, it is hoped that designing well-balanced collections (and letting

the competition resolution be automatic) will be easier than designing the

detailed action selection itself.

17.2.1 What problems can this be applied to?

In general, we cannot expect to apply these techniques to all multi-goal

problems. If goals are so di�erent that they e�ectively can't be interrupted

or interleaved, the ideas in this thesis may not be of much help.

Note however that the W-learning algorithm does not force goal-interleaving.

It only discovers whether goal-interleaving is possible. Competition can actu-

ally result in serial behavior in practice. Imagine agents that have almost no

areas of agreement, where one agent's best action is always the other's worst

action, and vice versa. As soon as one agent gets started (gets to take a few

actions down its goal path) it will be too strong compared to the others that

are not started, since it will have taken us into states where they can get no

reward, yet at the same time they would cause it a considerable loss if they

take over. Their loss by not getting their goal started cannot compete with

its loss if it loses the lead. So it will �ght them o� and run until completion.

Then another agent gets a chance, and runs to termination. And so on. In

practice, goals are satis�ed serially in this case. This is simply an extreme

version of the persistence-enforcing positive-feedback mechanism (x15.1.3).

17.2.2 Competition in Single Goal problems

This thesis has been concerned with the Action Selection problem - the prob-

lem of choice between multiple conicting goals at run-time. I now turn all

154

this on its head by applying it to the problems that Reinforcement Learning

has been primarily interested in - problems having one single goal.

Nothing in our model forces the competing agents to be actually trying

to solve di�erent goals. To solve a single-goal problem, we put together a

large number of agents with di�erent reward functions but all roughly trying

to solve the same thing - each perhaps taking radically di�erent approaches,

with statespaces and actionspaces that share nothing in common - and we let

them struggle via W-learning to solve it. If there are multiple unexpressed

behaviors, and lots of overlap, this may be a small price to pay if there is a

robust solution.

This has some resemblance to Minsky's \accumulation" of multiple dif-

ferent ways of solving a problem in his Society of Mind [Minsky, 1986]. Some

may be more e�cient than others, but we keep them all for robustness. Or

more subtly, it might be hard to rank them in a single order. Some may be

more e�cient some times (for some x) but less e�cient other times (for other

x).

Having a noisy collection of competing agents to solve the problem may

seem a dangerous strategy, but remember that if the creature is looking as

if it is going to make some serious error, individual agents will come in with

large W-values and take it all over for a while. We positively want collections

that single agents can take over and dominate (such as Minimize the Worst

Unhappiness) if they feel strongly enough.

Note that we could try something like this in Hierarchical Q-learning too

(but would pay the price of a large (x; i) statespace).

17.3 Di�erent source of numbers

In this thesis, I introduced Reinforcement Learning �rst, and then showed

how these numerical values could be propagated further to solve the action

selection problem. But I could just as easily have introduced the action

selection methods and left open where the numerical values came from. They

could also be evolved randomly, designed explicitly, or come from some other

learning method.

17.3.1 Symbolic W-learning

In particular, any system that builds up `�tness' values for actions F (x; a)

can be used as the basis of W-learning type schemes. If a symbolic AI system

can answer either the question before the fact: \You want to take action a

i

.

If I force you to take action a

k

, how bad will that be?" or the question after

155

the fact: \OK I ignored you and did something. How bad was it?" then a

symbolic AI W-learning system can be built.

17.4 Parallel W-learning

As should have been obvious throughout, and as is illustrated by Figures 5.3

and 6.1, W-learning almost demands a parallel implementation. Agents can

work out their suggested action and update their Q and W values indepen-

dently, there being no serial links between them at all.

Most parallel multi-agent systems postulate low-bandwidth communi-

cations between agents anyway. With basic (not Negotiated) W-learning

there is perfect parallelism, where there is no communication between agents

at all. What communication there is takes place between agents and the

switch. Similar to schemes such as Maes' Spreading Activation Networks

[Maes, 1989, x7.2], no problem-speci�c agent language is used. Only num-

bers are communicated.

Consider again Watkins' motivation [Watkins, 1989] of �nding learning

methods that might plausibly occur in nature, in particular methods that

impose limited computational demands per timestep. Once the Q-values have

been learnt, Q-learning provides a fast control policy - ignore rewards, don't

learn, and simply act on the best Q-value. A Q-learning-controlled creature

is a pure stimulus-response machine. Parallel W-learning would retain all

the speed of stimulus-response in a more sophisticated architecture.

How to parallelise is explained in more detail above in x14. See the `Num-

ber of updates required per timestep per agent' and also the `Restrictions on

Decentralisation'.

17.5 The Bottom-up Animat approach

The whole motivation for the behavior-based AI project (see [Dennett, 1978])

is to understand simple complete creatures and gradually move on to more

complex complete creatures (as opposed to the traditional AI approach of

trying to understand sub-parts of already-complex creatures in the hope of

combining these parts into an understanding of a whole complex creature).

The behavior-based AI approach involves a certain discipline in not mov-

ing on to more complex models until simpler ones have been exhausted and

understood. There is a great temptation in the House Robot problem to start

equipping the creature with internal working memory, context, world models,

map-building ability, a concept of time, plans, explicit goals, representations,

156

symbols, reasoning, and so forth. One ends up with a hand-designed ad-hoc

system from which very few if any general principles can be learnt.

I take the broad approach of Wilson [Wilson, 1990] in pushing the limits

of simple animat models, and resisting as long as possible the temptation to

introduce more complex models:

\The essential process is . . . given an environment and an ani-

mat with needs and a sensory/motor system that satis�es these

needs to some criterion, increase the di�culty of the environment

or the complexity of the needs - and �nd the minimum increase

in animat complexity necessary to satisfy the needs to the same

criterion." [Wilson, 1990]

For example, Todd et al. [Todd et al., 1994] show that even the possibili-

ties of sensor-less(!) memory-less creatures have not yet been fully explored.

Their creatures �nd (by evolution) the optimum p(a), the probability of gen-

erating an action (independent of the state of the world).

Certainly it is clear from this thesis that the possibilities of stimulus-

response have not remotely been exhausted. In particular, societies of stimulus-

response agents. Instead of building more complex components, I'm heading

in the other direction, of more complex societies of relatively simple compo-

nents. Actually I call these relatively simple components because they are

stimulus-response, but in fact making hierarchies or societies out of compo-

nents as complex as entire learning behaviors has only been tried relatively

recently.

Where all this is leading is towards ecosystem-like minds, with structure

in their collections, multiple competitions, and dynamic creation and de-

struction of agents. But I have been building carefully from the bottom up,

instead of jumping direct to such complex systems.

17.6 Dynamically changing collections of agents

17.6.1 The Ecosystem of Mind

This work was partly inspired by Edelman's vision of a \rainforest" mind,

with life and death, growth and decay, in a dynamic ecosystem inside the head

[Edelman, 1989, Edelman, 1992]. In his model, called Neural Darwinism,

competition is between structures called neuronal groups.

The idea is appealing, but it is di�cult to tell whether neuronal groups

are meant to be action-producing agents or just pattern classi�ers. Edelman

157

presents no explicit algorithm to show how the model is implemented. In

fact, presenting arguments only about symbolic AI, he draws the familiar

conclusion that no computer algorithm

1

could implement his ideas. No men-

tion is made of self-modifying, reinforcement-learning agents embedded in

the world, to which his criticisms do not apply.

Here, with W-learning, we have the basis for a full living and dying ecosys-

tem inside the creature, where what comes into existence, struggles, and per-

haps dies is not mere connections (as Edelman may in fact mean) but entire

autonomous goals. In standard W-learning, there is one competition between

the agents, this is resolved, and the creature is then �xed. In a dynamic col-

lection, agents would continually adjust their W-values as new agents came

into existence, old agents died, and the nature of their competition changed.

17.6.2 Invasion of strong new agents

In the earlier version of this document [Humphrys, 1996a, x17.5.1] I briey

discussed the possibilities for constructing dynamically changing collections.

The basic problem with a dynamic collection though, is, if there is an au-

tomatic generator of random new agents, that it can just generate a single

new, extremely strong agent (large di�erences between its rewards) which

immediately takes over the whole creature, turning a carefully-built creature

into a zombie overnight.

In fact, there would be an `arms race' between such strong agents over the

lifetime of the creature, as the agent-generator generated an even stronger

agent which took over in its turn, and so on. The creature would change from

being one type of zombie to another over its life. Our dilemma is caused by

the fact that we want the mind to be driven by strong individuals in each

state (we don't want woolly collective decision making). But then one strong

individual can take over.

There are a number of possible ways of making collections hard to invade

without going back to majority-rule, but at this point we must ask how useful

this line of thinking really is from the point of view of engineering.

When thinking about animal minds, it is attractive to think of new agents

(ideas, memes) coming into existence during the life history, and trying to

claim some space in the already-crowded mind. But from the point of view of

engineering, concepts like `individual' are only useful myths. If a collection is

1

This may all be a matter of terminology. Edelman's co-worker Olaf Sporns says

[Sporns, 1995] that they do not like to use the word algorithm for a self-modifying algorithm

embedded in the real world. A computer scientist would say that it still is an algorithm,

even if it has e�ectively become part of the world.

158

invaded and destroyed, we simply note that the new collection didn't work,

reset it to what it used to be and try something else. Resisting invasion

may be important in biology to preserve the integrity of the individual, but

in engineering this is just another way of building things. Only if we sent

our robot out into the world, with the ability to communicate, imagine, and

form new goals unsupervised over long periods of time, might questions of

maintaining individual integrity start to arise. Even then, an arti�cial system

can restore a past backup in a way that a natural system cannot.

So for the moment, dynamic collections are not so interesting since in

their basic form they are just another way of �nding combinations of agents

in the same collection. More interesting for now is to discuss whether the

collection itself can start to have any structure. This is the subject of the

�nal chapter.

159

Chapter 18

The general form of a Society

of Mind based on

Reinforcement Learning

We can produce one �nal summary diagram, showing how the methods in

this thesis might scale up to large numbers of agents. This is really part of

the Further work chapter, but I have separated it o� since it is self-contained,

and summarises the direction that all this work is heading in.

Consider what a contrast the idea of multiple agents, with overlapping

behaviors, driven by strong individuals, is to normal hand-designed systems,

where task decomposition is accomplished in a parsimonious manner, with

functions clearly parcelled out to di�erent modules and a reluctance to allow

any waste or overlap.

Consider the waste involved in a society of multiple competing agents

solving the same problem. Or indeed, in a society of multiple agents pursuing

di�erent goals but needing to learn common skills to solve them. Where there

is common functionality needed by two agents, e.g. both need to know how

to lift the left leg, the normal engineering approach would be to encode this

as a single function that both can call. Here in contrast, how to lift the left

leg is learnt (in perhaps di�erent ways) by both agents during development,

and the information learnt is stored (perhaps redundantly) in two di�erent

places.

But recall from the discussion in x15.3.3 that just because an agent has

learnt a skill doesn't mean that the agent actually wants to be obeyed. If

it �nds that another agent has learnt the same skill more e�ciently, it will

�nd that it does better when its own rudimentary action is not taken. Its

W-values will automatically drop so that it does not compete with the more

e�cient agent (as long as the other agent is winning). The rudimentary skill

160

serves no purpose except as a back-up in case of \brain damage". If the

winning agent is lost or damaged, another agent will rouse itself (bring its

W-values back up) to do the task (in its own slightly di�erent way) since the

task is not being done for it any more.

Instead of brittle task decomposition we have wasteful, overlapping task

decomposition. The skill might even be distributed over a number of overlap-

ping, winning agents, depending on which one got ahead �rst in each state

(for example, A

u

and A

s

in x8.2). If one of them is lost through brain damage,

the distribution of the skill among the remaining agents shifts slightly.

Let us formalise this notion that another agent might know better than

you how to do your job. Throughout this thesis, we have generally assumed

that agents know best how to maximize their own rewards, and therefore

that their W-values are positive and they try to win. In a Markov Decision

Process, agent A

i

maximizes its rewards, but only relative to a particular

state space, action space and reward structure P

i

xa

(r). These 3 things have

to be designed, and the designer might omit senses or actions that could

contribute towards rewards (as we saw in x7.1.1), or the designed reward

structure might not be rich enough to make the rewards at subgoals distin-

guishable from noise. One might argue that this means the world is not really

an MDP, but the answer is that almost all complex worlds aren't MDP's any-

way - we assume already that we are just trying to approximate one (recall

x4.2). So we have from A

i

's point of view, there are some states x in which

it would be better for it if it let another agent A

k

win. A

i

may actually have

the same suite of actions as A

k

, but may for some reason be unable to learn

what A

k

is doing (e.g. A

k

may appear to have a non-deterministic policy,

because it sees many states where A

i

sees only one, as in x7.1.1). In any

case, if A

i

observes the average reward when A

k

wins, then it will see that it

would pay on average to let it win.

Under my system, A

i

will drop out of the competition if A

k

is winning.

But if A

k

is not winning, then my model has a problem. A

i

cannot use A

k

's

trick, whatever it is, but has to try and compete itself, using its less e�cient

strategy. For instance, when I need to wander, ideally I give way to a highly-

specialised Explore agent which does nothing else. But if Explore isn't able

to win on its own, I have to come in with my own rudimentary version of the

skill.

18.1 Nested W-learning

Digney's Nested Q-learning [Digney, 1996] shows us an alternative way, where

A

i

can force A

k

to win, even if A

k

couldn't manage to win on its own. In

161

the basic setup (Figure 18.1), each agent is a combination both of a normal

Q-learning agent and a Hierarchical Q-learning switch. Each agent has its

own set of actions Q

i

(x; a) and a set of actions Q

i

(x; k) where action k means

\do whatever agent A

k

wants to do".

Wixson [Wixson, 1991] seems to have invented an earlier, but more re-

stricted, form of Nested Q-learning, where the called agent is called not just

to take an action for this timestep, but to take actions repeatedly from now

on until its goal state is reached. Digney's model (like ours) does not demand

the existence of terminating goal states. The action selection is revisited ev-

ery time step. In Digney's notation the choice of possible actions is:

u 2 fQ

a

1

; : : :Q

a

J

; Q

f

1

; : : :Q

f

I

g

In our notation this would mean that we build up Q-values for J real

actions plus I `actions' of calling other agents:

a 2 fa

1

; : : : a

J

; 1; : : : Ig

Each agent has its own statespace and its own actionspace. It can learn

Q

i

(x; a) as normal, and can also learn Q

i

(x; k) in a normal manner. Every

time A

k

wins state x, A

i

can update Q

i

(x; k) based on the state y we go to

and the reward r

i

that is received. It might �nd that in some states there is

a k such that Q

i

(x; k) is greater than any Q

i

(x; a).

Of course the di�erence between the agent and a Hierarchical Q-learning

switch is that the agent may not be obeyed when it says \do whatever A

k

wants to do". It has to �ght for A

k

using its own W-value W

i

(x). The

advantage of this model is that agents could specialise, and use function

from other agents without the other agent needing to be strong enough to

win by its own rights. For example, the e�cient, specialised Explore agent

might almost never win on its own, but regularly win because it was being

promoted by somebody else.

Digney's actual model is more like a hierarchy [Digney, 1996, x2.3] with

the Action Selection among the agents decided similar to a Hierarchical Q-

learning switch with a global reward function. What makes our model Nested

W-learning rather than Nested Q-learning is that we will retain the Action

Selection ideas of this thesis, while applying them to agents that are Digney's

Nested Q-learners.

Here the Action Selection in Figure 18.1 would still be decided on the

basis of Minimize the Worst Unhappiness. The winning agent either takes

an action itself, or immediately orders someone else to take an action. But

the principle of Action Selection is unchanged - the winning agent is using

162

Q(x,a)
or Q(x,i) of
another one

Q(x,a)
or Q(x,i) of
another oneQ(x,a)

or Q(x,i) of
another one

Figure 18.1: The simplest form of Nested W-learning. Each agent either

suggests its own action Q(x; a) or learns to suggest the action of another

agent Q(x; i) (without necessarily understanding the other agent's state or

actionspace). The Action Selection between the agents is still on the basis of

Minimize the Worst Unhappiness. That is, we apply the ideas of this thesis

to a collection of agents that are Nested Q-learners.

function from other agents for its own purposes, not for the purposes of the

other agent (much as the other agent will be happy to be thus used, and will

drop out of the competition if being defended by someone else's W-value).

1

W-learning learns in e�ect a single Q

i

(x; k) value for whoever the leader

happens to be. What actual action the leader takes may seem to vary (e.g.

because A

k

sees di�erent states where A

i

sees only one) so W-learning con-

centrates on just building up an average Q

i

(x; k) instead of trying to �nd

out what action(s) the leader is actually executing and building up Q

i

(x; a

k

)

values. The agent understands what action k means, but only for a single k.

Nested W-learning learns detailed Q

i

(x; k) values for many other agents

and then can suggest which it would prefer to win. Again their actions may

seem to vary so it concentrates on building up a Q-value for action k rather

than for any particular real action a

k

. Once all the agents have learnt such

detailed Q

i

(x; k) values, we need to do Action Selection on these as our base

Q-values. We can now actually do pure Minimize the Worst Unhappiness,

instead of W-learning, even if agents do not share the same actions. Because

now even if A

i

does not understand action a

k

, it certainly understands action

k.

An interesting question that arises in Figure 18.1 is whether an in�nite

loop could develop. For example, A

i

normally takes action a and A

j

normally

takes action b. A

i

starts to notice that b is actually better for it, just as A

j

1

So this is not like the scheme we suggested in x15.8, where the agent wants to win, but

accepts it can't and votes for who it would like to win instead. Here, taking another agent's

action may look like a compromise, but in fact the winning agent hasn't compromised at

all.

163

notices that a is actually better for it. A

i

switches to calling A

j

just as A

j

's

preferred action becomes to call A

i

. At this point, if either of them wins, an

in�nite loop will ensue. One solution is to choose preferred actions using only

a soft max (x2.2.3). Another is to design the possible Q(x; i) interactions so

that a chain of commands cannot loop back on itself (see Figure 18.3 shortly).

18.1.1 The generic form of Nested W-learning

In the generic scheme (Figure 18.2) there are fundamentally two classes of

agents, those competing for Action Selection and those not. In Figure 18.2,

Action Selection takes place only among the agents in the top layer. The

lower layer agents only ever execute their actions when called by a winning

top layer agent (when called thus they simply execute their best action ac-

cording to their Q-values). For instance, in the collection of 8 agents for

the House Robot problem as de�ned in x8, we could have 6 of them in the

competitive top layer and put A

c

and A

w

in the lower layer. At the lower

level, we have specialised Explore agents. At the top level, we follow some

goal or else call the specialised Explore.

In the generic case, agents may consist of Q(x; a) only, Q(x; i) only (the

agent gets all its work done by calling other agents), or a combination of

both. Note that if we take agents out of the Action Selection competition,

then we only get to see what happens when they win when agents in the top

layer get around to exploring di�erent Q(x; i).

Figure 18.1 can now be seen to be a special case of the generic scheme

with the lower layer empty. Another special case would be the more familiar

2-layer hierarchy of Figure 18.3 (note that this is designed so that an in�nite

loop of commands is impossible). Another special case would be to have the

same agents as in Figure 18.3 but include all of them in the Action Selection,

the (formerly-lower) Q(x; a) ones hardly ever winning on their own (this is

more like what we actually had in x8). The basic Hierarchical Q-learning

is also just another special case, with a single Q(x; i)-only agent in the top

layer.

In a multi-layer hierarchy, agents in the Action Selection layer call agents

in a lower layer, which call agents in a further lower layer, and so on. This

is actually just another special case with all layers other than the Action

Selection layer �tting inside the single `lower layer' of the generic case. The

agents in the `lower layer' are then divided into groups with rules about

which other agents an agent's Q(x; i) can refer to. The advantage of setting

up such rules (apart from ensuring again that no in�nite loop can occur)

would be to reduce the size of i in the Q(x; i) statespace, that is, reduce the

number of `useful' agents that any one agent has to know about. As we have

164

Action Selection level
(agents build up W-values)

passive level
(agents have no W-values,
 just Q-values
 and wait to be called)

Q(x,a)
or Q(x,i) of
another one
in this or
upper layer

Q(x,a)
or Q(x,i) of
another one
in this or
upper layer

Q(x,a)
or Q(x,i) of
another one
in this or
upper layer

Q(x,a)
or Q(x,i) of
another one
in this or
lower layer

Q(x,a)
or Q(x,i) of
another one
in this or
lower layer

Q(x,a)
or Q(x,i) of
another one
in this or
lower layer

Figure 18.2: The generic form of Nested W-learning. Action Selection (on

the basis of Minimize the Worst Unhappiness) takes place among the agents

in the top layer only. The winner may or may not call an agent in the lower

layer.

165

Q(x,a)
or Q(x,i) of
one below

Q(x,a)
Q(x,a)

Q(x,a)
or Q(x,i) of
one below

Q(x,a)
or Q(x,i) of
one below

Q(x,a)

Action Selection level

Figure 18.3: A typical form of Nested W-learning.

said before though (x15.2.1), hierarchies are only particular cases of the more

general model, and not necessarily the most interesting cases either.

18.2 Feudal W-learning

Watkins' Feudal Q-learning [Watkins, 1989, x9] shows another way of having

agents use other agents - by sending explicit orders.

In Feudal Q-learning, a master agent sends a command to a slave agent,

telling it to take the creature to some state (which the master agent may

not know how to reach on its own). The slave agent receives rewards for

succeeding in carrying out these orders. To formalise, the master has a

current command c in operation. This actually forms part of the `state'

of the slave. Using the notation (x,c),a -> (y,c), the slave will receive

rewards for transitions of the form:

(*,c),(*) -> (c,c)

Note that immediately the command c changes, we jump to an entirely

166

new state for the slave and it may start doing something entirely di�erent.

2

Given a slave that has learnt this, the master will learn that it can reach

a state by issuing the relevant command. Using the notation x,a -> y, it

will note that the following will happen:

(*),(c) -> (c)

That is, the master learns that the world has state transitions P

xa

(y) such

that P

xc

(c) is high. It then learns what actions to take based on whatever

it wants to get done. Note that it can learn a chain - that P

xc

(y) is high

and then P

yc

(c) is very high. So the model does not fail if the slave takes a

number of steps to ful�l the order.

The master may be able to have a simpler state space as a result of this

delegation. For example, in x7.1.1 A

f

can order A

n

to get it to the state

where it is not carrying food (so that it can then set o� for a new reward).

A

n

senses x = (i; n; c) and takes 9 move actions. A

f

senses x = (i; f) and

takes 9 move actions plus 2 command actions (when the creature reaches the

nest, A

f

will want to change the command to do nothing). The combined

state and action memory requirements of A

f

and A

n

is 544, whereas for a

monolithic A

f

sensing x = (i; n; f) and taking 9 move actions it would be

1620. For the W-learning agents in that section the combined state and

action space was 261, but recall that A

f

could not explicitly call A

n

(it could

only drop out of the competition and hope that A

n

would win).

Again, Action Selection must take place somewhere, and the basic prin-

ciple of Action Selection is unchanged. The master is using the slave for its

own purposes. The slave indeed has no purposes of its own, and so cannot be

in the Action Selection loop. In Feudal W-learning (as distinct from Feudal

Q-learning) Action Selection will take place between master agents on the

basis of Minimize the Worst Unhappiness. The winner will either take an

action itself or send a command to a slave agent.

We can combine Nested and Feudal W-learning and the Action Selection

ideas of this thesis in one grand diagram showing the general form of a

Society of Mind based on Reinforcement Learning (Figure 18.4). Note that

this structure is not a hierarchy in any meaningful sense. While the ow of

control must originate with some winner in the Action Selection layer, after

that control may ow in any direction.

2

Actually there is a special case where a change of command happens just as the slave

ful�lled the old command. We should still reward it - it's not its fault that the state has

suddenly changed to (c,d). So we should actually reward for the transition: (*,c),(*)

-> (c,*)

167

Q(x,a)
or Q(x,i) of one in layers 1 or 2
or send Q(x,c) to one in layer 3

Q(x,a)
or Q(x,i) of one in layers 1 or 2
or send Q(x,c) to one in layer 3

Layer 2 - normal passive layer.
Agents have no W-values
(just wait to be called).
Agents have goals.

Layer 3 - slave passive layer.
Agents have no W-values
(just wait to be called).
Agents do not have goals.

Layer 1 - Action Selection layer.
Agents build up W-values.
Action Selection based on
Minimize the Worst Unhappiness.
Agents have goals.

Q(x,a)
or Q(x,i) of one in layers 1 or 2
or send Q(x,c) to one in layer 3

Figure 18.4: The general form of a Society of Mind based on Reinforcement

Learning. This is not a hierarchy.

168

18.3 The wasteful, overlapping mind

Neither Nested nor Feudal approaches a�ect the basic analysis we made

in this thesis of how Action Selection between competing peers should be

resolved. The basic ideas running throughout this thesis, of overlap driven

by strong individuals, of multiple unexpressed behaviors and agents dropping

out of competitions, all have a parallel in Minsky's \If it's broken don't �x

it, suppress it" maxim in the Society of Mind [Minsky, 1986]. In Minsky's

model, the normally-good behavior is allowed expression most of the time,

except in some states where a censor overrides it and prevents its expression.

This would be like W-learning between a general solver of a problem and a

highly-speci�c agent introduced to focus on one small area of statespace. The

specialist remains quiet (has low W-values) for most of the statespace and

only steps in (has high W-values) when the state x is in the area of interest

to it.

For example, we could have specialised agents which are trained to look

for disasters, combined with a more careless agent dedicated to solving the

main problem. The main agent is allowed a free run except at the edges near

to disasters, at which the previously quiet disaster-checkers will raise their

W-values to censor it. The looming disaster might be obvious in the disaster-

checker's sensory world but invisible in the main agent's sensory world. We

end up with one agent A

k

generally in charge, but being `shepherded' as

it goes along its route by a variety of other agents A

i

, who are constantly

monitoring its actions and occasionally rising up to block them.

Where all this is leading is away from the simplistic idea of a single thread

of control. Any complex mind should have alternative strategies constantly

bubbling up, seeking attention, wanting to be given control of the body. As

Dennett [Dennett, 1991] says, the Cartesian Theatre may be o�cially dead,

but it still haunts our thinking. We should not be so afraid of multiple

unexpressed behaviors:

\We can suppose that all of this happens in swift generations of

`wasteful' parallel processing, with hordes of anonymous demons

and their hopeful constructions never seeing the light of day . . . "

[Dennett, 1991, x8.2]

The concept of ideas having to �ght for actual expression is of course not

original. The idea of competition between sel�sh sub-parts of the mind is at

least as old as William James and Sigmund Freud. But what I have tried

to do in this thesis is to provide some fully-speci�ed and general-purpose

169

algorithms rather than either unimplementable conceptual models or ad-hoc

problem-speci�c architectures.

170

Acknowledgements

I am most indebted to Barney Pell for introducing me to Reinforcement Learning.

Thanks to my supervisor John Daugman for his consistent support and advice.

Thanks to Richard Prager, Tony Prescott and a number of anonymous referees for

much essential criticism.

Credit to Ian Lewis and Gavin Rummery for important contributions, and

thanks also to Ralph Becket, Marcel Hernandez, Steve Hodges, Clare Jackson,

Dave Palfrey, Tony Robinson, Michael K.Sahota and Chen K.Tham for useful

comments on this work. There are many other people that I will not list, with

whom I have had useful and inspiring conversations about my work and related

topics. They have made me so glad I chose to come to Cambridge.

Thanks to John Murphy for encouraging me to do a PhD. Sincere thanks to

William Clocksin and Roger Needham for getting me started. This work was

supported mainly by the British Council and by the University of Cambridge

Computer Laboratory. I am grateful to the United States O�ce of Naval Research

and the M.R. Bauer Foundation for a student travelship. I am also grateful for

contributions from Trinity Hall, Cambridge, from the Cambridge Philosophical

Society and from the University of Cambridge Board of Graduate Studies.

Thanks to Frank for his comments, thanks to Richard for astonishingly reading

the whole thesis, and thanks in general to Richard, Frank and Joe for many years

of entertainment. Much love to Elizabeth, and thanks for being there for the good

part.

171

Appendix A

Incremental sampling of

random variables

Most of the results in these appendices are either well-known or trivial, but

they are included here for completeness, and so they can be referred to from

the main body of the text.

A.1 Single variable (average)

Let d

1

; d

2

; d

3

; : : : be samples of a stationary random variable d with expected

value E(d). Then the following update algorithm provides an elegant way of

sampling them. Repeat:

D := (1� �)D + �d

i

Theorem A.1 If � takes successive values 1;

1

2

;

1

3

; : : :, then D ! E(d), in-

dependent of the initial value of D.

Proof: D's updates go:

D := 0D

init

+ 1d

1

= d

1

D :=

1

2

d

1

+

1

2

d

2

=

1

2

(d

1

+ d

2

)

D :=

2

3

1

2

(d

1

+ d

2

) +

1

3

d

3

=

1

3

(d

1

+ d

2

+ d

3

)

� � �

D =

1

t

(d

1

+ � � �+ d

t

)

i.e. D is simply the average of all d

i

samples so far.

As t!1, D! E(d). �

172

More generally:

Theorem A.2 If � takes successive values

1

t

;

1

t+1

;

1

t+2

; : : :, then D ! E(d),

independent of the initial value of D, and independent of t.

Proof: D's updates go:

D :=

t�1

t

D

init

+

1

t

d

1

D :=

t

t+1

�

t�1

t

D

init

+

1

t

d

1

�

+

1

t+1

d

2

=

t�1

t+1

D

init

+

1

t+1

(d

1

+ d

2

)

D :=

t+1

t+2

�

t�1

t+1

D

init

+

1

t+1

(d

1

+ d

2

)

�

+

1

t+2

d

3

=

t�1

t+2

D

init

+

1

t+2

(d

1

+ d

2

+ d

3

)

� � �

D =

t�1

t+n

D

init

+

1

t+n

(d

1

+ � � �+ d

n+1

)

=

t�1

t+n

D

init

+

n+1

n+t

1

n+1

(d

1

+ � � �+ d

n+1

)

As n!1:

D ! 0 + 1E(d)

that is, D! E(d). �

One way of looking at this is to consider D

init

as the average of all samples

before time t, samples which are now irrelevant for some reason. We can

consider them as samples from a di�erent distribution f :

D

init

=

1

t� 1

(f

1

+ � � �+ f

t�1

)

Hence:

D =

1

n

(f

1

+ � � �+ f

t�1

+ d

t

+ � � �+ d

n

)

=

1

n

(f

1

+ � � �+ f

t�1

) +

1

n

(d

t

+ � � �+ d

n

)

! 0 + E(d)

as n!1.

A.2 Single variable (time-weighted)

An alternative approach (e.g. see [Grefenstette, 1992]) is to build up not the

average of all samples, but a time-weighted sum of them, giving more weight

to the most recent ones. This is accomplished by setting � to be constant,

in which case D's updates go:

173

D := (1� �)D

init

+ �d

1

D := (1� �)

2

D

init

+ (1� �)�d

1

+ �d

2

D := (1� �)

3

D

init

+ (1� �)

2

�d

1

+ (1� �)�d

2

+ �d

3

� � �

D = (1� �)

t

D

init

+ � ((1� �)

t�1

d

1

+ (1� �)

t�2

d

2

+ � � �+ (1� �)d

t�1

+ d

t

)

Since (1� �)

n

! 0 as n !1, this weights more recent samples higher.

Grefenstette uses typically (1� �) = 0:99.

A.3 Multiple variables

Consider sampling alternately from two stationary random variables d and

f :

D := 0D

init

+ 1d

1

D :=

1

2

D +

1

2

f

1

D :=

2

3

D +

1

3

d

2

D :=

3

4

D +

1

4

f

2

D :=

4

5

D +

1

5

d

3

� � �

Theorem A.3 D!

1

2

E(d) +

1

2

E(f)

Proof: From Theorem A.1, after 2t samples:

D =

1

2t

(d

1

+ f

1

+ d

2

+ f

2

+ � � �+ d

t

+ f

t

)

=

1

2

1

t

(d

1

+ � � �+ d

t

) +

1

2

1

t

(f

1

+ � � �+ f

t

)

!

1

2

E(d) +

1

2

E(f)

as t!1. �

More generally, consider where we have multiple stationary distributions

d

(1)

; : : : ; d

(n)

, where each distribution d

(i)

has expected value E(d

(i)

). At each

time t, we take a sample d

(i)

t

from one of the distributions. Each distribution

d

(i)

has probability p(i) of being picked. Repeat:

D := (1� �)D + �d

(i)

t

174

Theorem A.4 If the distribution p is stationary, then D ! p(1)E(d

(1)

) +

� � �+ p(n)E(d

(n)

).

Proof: For a large number of samples t we expect to take p(1)t samples

from d

(1)

, p(2)t samples from d

(2)

, and so on. From Theorem A.1, we expect:

D =

1

t

(d

(1)

1

+ � � �+ d

(1)

p(1)t

+ d

(2)

1

+ � � �+ d

(2)

p(2)t

+ � � �+ d

(n)

1

+ � � �+ d

(n)

p(n)t

)

= p(1)

1

p(1)t

�

d

(1)

1

+ � � �+ d

(1)

p(1)t

�

+ � � � + p(n)

1

p(n)t

�

d

(n)

1

+ � � �+ d

(n)

p(n)t

�

! p(1)E(d

(1)

) + � � �+ p(n)E(d

(n)

)

as t!1. �

175

Appendix B

Bounds

B.1 Bounds with a learning rate �

Let D be updated by:

D := (1� �)D + �d

where d is bounded by d

max

, d

min

, and the initial value of � = 1. Then:

Theorem B.1 D is also bounded by d

max

, d

min

.

Proof: The highest D can be is if it is always updated with d

max

:

D := 0D

init

+ 1d

max

= d

max

D := (1� �)d

max

+ �d

max

= d

max

� � �

so D

max

= d

max

. Similarly D

min

= d

min

. �

B.2 Bounds of Q-values

Theorem B.2

Q

max

=

r

max

1�

Q

min

=

r

min

1�

Proof: In the discrete case, Q is updated by:

Q(x; a) := (1� �)Q(x; a) + �(r + max

b2A

Q(y; b))

176

so by Theorem B.1:

Q

max

= (r + Q)

max

= r

max

+ Q

max

Q

max

=

r

max

1�

This can also be viewed in terms of temporal discounting:

Q

max

= r

max

+ (r

max

+ (r

max

+ � � �))

= r

max

+ r

max

+

2

r

max

+ � � �

= (1 + +

2

+ � � �)r

max

=

1

1�

r

max

Similarly:

Q

min

= r

min

+ Q

min

Q

min

=

r

min

1�

= r

min

+ r

min

+

2

r

min

+ � � �

�

For example, if = 0, then Q

max

= r

max

. And (assuming r

max

> 0) as

 ! 1, Q

max

!1.

Note that since r

min

< r

max

, it follows that Q

min

< Q

max

.

B.3 Bounds of W-values

Theorem B.3

W

max

= Q

max

�Q

min

W

min

= � (Q

max

�Q

min

)

Proof: In the discrete case, W is updated by:

W (x) := (1� �)W (x) + �(Q(x; a)� (r + max

b2A

Q(y; b)))

so by Theorem B.1:

W

max

= (Q� (r + Q))

max

= Q

max

� (r + Q)

min

= Q

max

�Q

min

by Theorem B.2.

177

Similarly:

W

min

= Q

min

�Q

max

�

Note that since Q

min

< Q

max

, it follows that W

min

< 0 < W

max

.

178

Appendix C

2-reward reward functions

Consider an agent of the form:

A

i

reward: if (good event) r else s

where r > s.

C.1 Policy in Q-learning

Theorem C.1 Q-learning returns the same policy irrespective of the exact

values of r and s, provided only that the inequality r > s is maintained.

Proof: Let us �x r and s and learn the Q-values. In a deterministic

world, given a state x, the Q-value for action a will be:

Q(x; a) = r

t

+ r

t+1

+

2

r

t+2

+ � � �

=

P

i

i

r +

P

j

j

s for various i; j

= cr + ds

for some real numbers c+d = 1++

2

+ � � �. The Q-value for a di�erent

action b will be:

Q(x; b) =

P

k

k

r +

P

l

l

s for various di�erent k; l

= er + fs

where e+ f = 1 + +

2

+ � � �. That is, e+ f = c+ d.

So whichever one of c and e is bigger de�nes which is the best action

(which gets the larger amount of the `good' reward r), irrespective of the

sizes of r > s. �

179

Note that these numbers are not integers - it may not be simply a question

of the worse action receiving s instead of r a �nite number of times. The

worse action may also receive r instead of s at some points, and also the

number of di�erences may in fact not be �nite.

To be precise, noting that (c � e) = (f � d), the di�erence between the

Q-values is:

Q(x; a)�Q(x; b) = (c� e)r + (d� f)s

= (c� e)r � (c� e)s

= (c� e)(r � s)

where the real number (c� e) is constant for the given two actions a and

b in state x. (c � e) depends only on the probabilities of events happening,

not on the speci�c values of the rewards r and s that we hand out when

they do. Changing the relative sizes of the rewards r > s can only change

the magnitude of the di�erence between the Q-values, but not the sign. The

ranking of actions will stay the same.

For example, an agent with rewards (10,9) and an agent with rewards

(10,0) will have di�erent Q-values but will still suggest the same optimal

action a

i

.

In a probabilistic world, we would have:

E(r

t

) = pr + qs

where p+ q = 1, and:

E(r

t+1

) =

P

y

P

xa

(y)(p

y

r + q

y

s) where each p

y

+ q

y

= 1

=

P

y

p

y

P

xa

(y)r +

P

y

q

y

P

xa

(y)s

= p

0

r + q

0

s

for some p

0

+ q

0

= 1. Hence:

Q(x; a) = (pr + qs) + (p

0

r + q

0

s) +

2

(p

00

r + q

00

s) + � � �

= (p+ p

0

+

2

p

00

+ � � �)r + (q + q

0

+

2

q

00

+ � � �)s

= cr + ds

for some c+ d = 1 + +

2

+ � � � as before.

180

C.2 Strength in W-learning

Theorem C.2 The strength of the agent in W-learning is simply propor-

tional to (r � s).

Proof: From the proof of Theorem C.1:

W

i

(x) = Q

i

(x; a

i

)�Q

i

(x; a

k

)

= c

ki

(x)(r � s)

where c

ki

(x) is a constant independent of the particular rewards. �

Using our `deviation' de�nition, for the 2-reward agent in a deterministic

world:

d

ki

(x) = c

ki

(x)(r � s)

The size of the W-value that A

i

presents in state x if A

k

is the leader

is simply proportional to the di�erence between its rewards. If A

k

wants to

take the same action as A

i

, then c

ki

(x) = 0 (that is, (c � e) = 0). If the

leader switches to A

l

, the constant switches to c

li

(x).

Increasing the di�erence between its rewards will cause A

i

to have the

same disagreements with the other agents about what action to take, but

higherW

i

(x) values - that is, an increased ability to compete. So the progress

of the W-competition will be di�erent.

For example, an agent with rewards (8,5) will be stronger (will have higher

W-values and win more competitions) than an agent with the same logic and

rewards (2,0). And an agent with rewards (2,0) will be stronger than one

with rewards (10,9). In particular, the strongest possible 2-reward agent is:

A

i

reward: if (good event) r

max

else r

min

C.3 Normalisation

Any 2-reward agent can be normalised to the form:

A

i

reward: if (good event) (r � s) else 0

From Theorem C.1, this will have di�erent Q-values but the same Q-

learning policy. And from Theorem C.2, it will have identical W-values. You

can regard the original agent as an (r � s); 0 agent which also picks up an

automatic bonus of s every step no matter what it does. Its Q-values can

181

be obtained by simply adding the following to each of the Q-values of the

(r � s); 0 agent:

s+ s+

2

s+ � � �

=

s

1�

We are shifting the same contour up and down the y-axis in Figure 8.1.

The same suggested action and the same W-values means that for the

purposes of W-learning it is the same agent. For example, an agent with

rewards (1.5,1.1) is identical in W-learning to one with rewards (0.4,0). The

W=Q method would treat them di�erently.

C.4 Exaggeration

Say we have a normalised 2-reward agent A

1

:

A

1

reward: if (good event) r else 0

where r > 0.

Theorem C.3 If agent A

2

is of the form:

A

2

reward: if (good event) cr else 0

where the condition is the same, then:

Q

�

2

(x; a) = cQ

�

1

(x; a) 8x; a

Proof: We have just multiplied all rewards by c, so all Q-values are

multiplied by c. If this is not clear, see the general proof Theorem D.1. �

A

2

will have the same policy as A

1

, but di�erent W-values. We are

exaggerating or levelling out the contour in Figure 8.1. In particular, the

strongest possible normalised agent is:

A

i

reward: if (good event) r

max

else 0

182

Appendix D

3-reward (or more) reward

functions

For 3-reward (or more) agents the relative sizes of the rewards do matter for

the Q-learning policy. Consider an agent of the form:

A

i

reward: if (best event) r

1

else if (good event) r

2

else r

3

where r

1

> r

2

> r

3

.

D.1 Policy in Q-learning

We show by an example that changing one reward in this agent while keeping

others �xed can lead to a switch of policy. Imagine that currently actions a

and b lead to the following sequences of rewards:

(x; a) leads to sequence r

3

; r

3

; r

3

; r

3

; r

1

and then r

2

; : : : forever

(x; b) leads to sequence r

2

; r

2

; r

2

; r

2

; r

2

and then r

2

; : : : forever

Currently action b is the best. We lose r

2

< r

1

on the �fth step certainly,

but we make up for it by receiving the payo� from r

2

> r

3

in the �rst four

steps. However, if we start to increase the size of r

1

, while keeping r

2

and r

3

the same, we can eventually make action a the most pro�table path to follow

and cause a switch in policy.

D.2 Strength in W-learning

Because increasing the gaps between rewards may switch policy, we can't

say that in general it will increase W-values. In the example above, say the

183

leader A

k

was suggesting (and executing) action a all along. By increasing

the gaps between our rewards, we suddenly want to take action a ourself, so

W

i

(x) = 0.

Increasing the di�erence between its rewards may cause A

i

to have new

disagreements, and maybe new agreements, with the other agents about what

action to take, so the progress of the W-competition may be radically di�er-

ent. Once a W-value changes, we have to follow the whole re-organisation to

its conclusion.

What we can say is that multiplying all rewards by the same constant

(see xD.4 shortly), and hence multiplying all Q-values by the constant, will

increase or decrease the size of all W-values without changing the policy.

D.3 Normalisation

Any agent with rewards r

1

; r

2

; : : : ; r

n�1

; r

n

can be normalised to one with

rewards (r

1

� r

n

); (r

2

� r

n

); : : : ; (r

n�1

� r

n

); 0. The original agent can be

viewed as a normalised one which also picks up r

n

every timestep no matter

what.

The normalised agent will have the same policy and the same W-values.

D.4 Exaggeration

Theorem D.1 If agent A

1

has some reward function with rewards r

1

; r

2

; : : : ; r

n

and agent A

2

's reward function has the same logic, but with rewards cr

1

; cr

2

; : : : ; cr

n

,

where c is some constant, then:

Q

�

2

(x; a) = cQ

�

1

(x; a) 8x; a

Think of it as changing the \unit of measurement" of the rewards.

Proof: When we take action a in state x, let P

xa

(i) be the probability

that reward r

i

is given to A

1

(and therefore that reward cr

i

is given to A

2

).

Then A

2

's expected reward is simply c times A

1

's expected reward:

E

2

(r

t

) =

P

i

(cr

i

)P

xa

(i)

= c

P

i

r

i

P

xa

(i)

= cE

1

(r

t

)

It follows from the de�nitions in x2.1 that V

�

2

(x) = cV

�

1

(x) and Q

�

2

(x; a) =

cQ

�

1

(x; a). �

A

2

will have the same policy as A

1

, but larger or smaller W-values.

184

Appendix E

Weighted sum and weighted

mean

Consider a weighted sum of quantities d

i

:

D = �

1

d

1

+ � � �+ �

t

d

t

A weighted mean is a weighted sum where 0 � �

i

� 1 such that

P

i

�

i

= 1.

The ordinary mean is a special case of this with �

i

=

1

t

. A weighted mean

may be greater than or smaller than the mean.

185

Appendix F

Full list of action selection

methods

We only consider here what numbers one might generate at a single timestep

where some action is being taken. That is, we only use the Q-value an agent

has for the executed action or the loss it is su�ering. We omit methods that

use terms that don't mean anything in this timestep, such as (from x10):

max

i

X

k

(Q

i

(x; a

i

)�Q

i

(x; a

k

))

We also only consider maximizing, minimizing and summing. We omit

other possible methods, such as product (x15.5.2) or standard deviation

(x12.4).

Many methods below make no sense, such as maximizing unhappiness.

Ones that make some sense are in bold.

186

F.1 Search for compromise action

Search for this, and take action a:

max

a

max

i

Q

i

(x; a) Maximize the Best Happiness (W=Q)

max

a

max

i

(Q

i

(x; a

i

)�Q

i

(x; a)) �nd worst loss and cause it

max

a

min

i

Q

i

(x; a) Minimize the Worst Unhappiness

(but with problems, see x13)

max

a

min

i

(Q

i

(x; a

i

)�Q

i

(x; a)) �nd worst minimum loss and cause it

max

a

P

i

Q

i

(x; a) Maximize Collective Happiness

max

a

P

i

(Q

i

(x; a

i

)�Q

i

(x; a)) maximize collective unhappiness

min

a

max

i

Q

i

(x; a) �nd worst maximum reward and take it

min

a

max

i

(Q

i

(x; a

i

)�Q

i

(x; a)) Minimize the Worst Unhappiness

min

a

min

i

Q

i

(x; a) �nd worst reward and take it

min

a

min

i

(Q

i

(x; a

i

)�Q

i

(x; a)) cause the smallest unhappiness

(just obey someone, see x9)

min

a

P

i

Q

i

(x; a) minimize collective happiness

min

a

P

i

(Q

i

(x; a

i

)�Q

i

(x; a)) Minimize Collective Unhappiness

187

F.2 Use only suggested actions

Search for this, and take action a

k

:

max

k

max

i

Q

i

(x; a

k

) Maximize the Best Happiness (W=Q)

max

k

max

i

(Q

i

(x; a

i

)�Q

i

(x; a

k

)) �nd worst loss and cause it

max

k

min

i

Q

i

(x; a

k

) Minimize the Worst Unhappiness

(but with problems, see x13)

max

k

min

i

(Q

i

(x; a

i

)�Q

i

(x; a

k

)) �nd worst minimum loss and cause it

(assume i 6= k)

max

k

P

i

Q

i

(x; a

k

) Maximize Collective Happiness

max

k

P

i

(Q

i

(x; a

i

)�Q

i

(x; a

k

)) maximize collective unhappiness

min

k

max

i

Q

i

(x; a

k

) �nd worst maximum reward and take it

min

k

max

i

(Q

i

(x; a

i

)�Q

i

(x; a

k

)) Minimize the Worst Unhappiness

(W-learning)

min

k

min

i

Q

i

(x; a

k

) �nd worst reward and take it

min

k

min

i

(Q

i

(x; a

i

)�Q

i

(x; a

k

)) cause the smallest unhappiness

(just obey someone, see x9)

min

k

P

i

Q

i

(x; a

k

) minimize collective happiness

min

k

P

i

(Q

i

(x; a

i

)�Q

i

(x; a

k

)) Minimize Collective Unhappiness

(Collective W-learning)

Search for this, and take action a

i

:

max

i

Q

i

(x; a

i

) Maximize the Best Happiness (W=Q)

min

i

Q

i

(x; a

i

) �nd worst reward and take it

188

In fact, we also omitted combinations of two of these terms. For instance,

Tony Prescott suggested the following:

max

k

"

Q

k

(x; a

k

)�

X

i;i 6=k

(Q

i

(x; a

i

)�Q

i

(x; a

k

))

#

That is, the gain by the winner, minus the losses it causes the others.

Note that:

X

i;i 6=k

(Q

i

(x; a

i

)�Q

i

(x; a

k

)) =

X

i

(Q

i

(x; a

i

)�Q

i

(x; a

k

))

This method seems also to inhabit that desirable middle ground between

Maximize the Best Happiness and the Collective methods. It somewhat

answers the criticism of Maximize the Best Happiness, in that if the winner

would make a gain no matter what action is taken, then it will prefer actions

that cause smaller losses to the other agents. We see that it would successfully

be opportunistic in the example in x9.1. And it is still more individual-driven

than the pure Collective methods - it successfully picks A

1

in the �rst example

in x12.3.

But we only have to increase the number of agents to show that it is still

vulnerable to the criticisms of any Collective method. It will fail to pick A

1

here:

a (1) (2)

Q1(x,a) [10] 0

Q2(x,a) 3 [5]

Q3(x,a) 3 [5]

Q4(x,a) 3 [5]

Q5(x,a) 3 [5]

Q6(x,a) 3 [5]

Q7(x,a) 3 [5]

Q8(x,a) 3 [5]

Q9(x,a) 3 [5]

The only other method of combining two terms that makes sense is:

max

k

"

X

i

Q

i

(x; a

k

)�

X

i

(Q

i

(x; a

i

)�Q

i

(x; a

k

))

#

which again is just another Collective method.

189

Appendix G

Experimental Details

The experiments in this dissertation should not be regarded as completely

de�nitive. As noted in x17.1, the complexity of the arti�cial world needs to

increase if we are to properly separate the methods. Then comparisons can

be run similar to the experiments here, the full details of which follow. The

experiments here were all implemented in C++.

Q-learning (x4.3) - Monolithic Q-learner learns Q(x; a) using the global reward

function of x4.3.1. Q-values are stored in a neural network (in fact, for convenience, this

is broken into one network per action a). 100 trials, each trial interacting with the world

1400 times and then replaying experiences 30 times. Policy improves over time using

Boltzmann distribution (x2.2.3). Test over 20000 timesteps (interactions with world) to

yield score according to global reward function of x4.3.1. The architecture of the network

and coding of inputs was adjusted to get the best score of average 6.285 points per 100

timesteps.

Hand-coded program (x4.3.3) - A range of strictly-hierarchical programs were

designed, with both deterministic and stochastic policies. Test over 20000 timesteps (in-

teractions with world) to yield score according to global reward function of x4.3.1. The

best scored average 8.612 points per 100 timesteps.

Hierarchical Q-learning (x4.4) - 5 small agents, with rewards 1 or 0, as in x4.4.

Agents learn Q-values for their local reward functions by random exploration of 300000

timesteps (interactions with world), all learning together (x4.4.2) with random winner each

step. The switch then learns Q(x; i) using the global reward function of x4.3.1. Switch's

Q-values are stored in a neural network (in fact, for convenience, this is broken into one

network per action i). 100 trials, each trial interacting with the world 1400 times and then

replaying experiences 30 times. Policy improves over time using Boltzmann distribution

(x2.2.3). Test over 20000 timesteps (interactions with world) to yield score according to

global reward function of x4.3.1. The architecture of the network and coding of inputs was

adjusted to get the best score of average 13.641 points per 100 timesteps.

190

W-learning with subspaces (x8) - 8 small agents, with rewards r

i

or 0, as in x8.

Agents learn Q-values for their local reward functions by random exploration of 300000

timesteps (interactions with world), all learning together (x4.4.2) with random winner

each step. Agents learn Q-values once with all r

i

= 1. Genetic algorithm genotype is a

set of r

i

's. Population size 60. For each individual genotype, multiply base Q-values by r

i

(x8.1.2), then re-learn W-values by W-learning (without reference to global reward) over

50000 timesteps (interactions with world), then test. Test resultant creature over 20000

timesteps (interactions with world) to yield score according to global reward function of

x4.3.1. This score is the �tness function to decide who is allowed reproduce. Evolution

for 30 generations found best combination of r

i

's scoring average 13.446 points per 100

timesteps.

W=Q (x9) - 8 small agents, with rewards r

i

or 0, as in x8. Agents learn Q-values

for their local reward functions by random exploration of 300000 timesteps (interactions

with world), all learning together (x4.4.2) with random winner each step. Agents learn

Q-values once with all r

i

= 1. Genetic algorithm genotype is a set of r

i

's. Population size

60. For each individual genotype, multiply base Q-values by r

i

(x8.1.2), then test. No

W-values to learn since W is simply Q. Test creature over 20000 timesteps (interactions

with world) to yield score according to global reward function of x4.3.1. This score is the

�tness function to decide who is allowed reproduce. Evolution for 30 generations found

best combination of r

i

's scoring average 15.313 points per 100 timesteps.

W-learning with full space (x10) - 8 small agents, with rewards r

i

or 0, as in x8.

Agents learn Q-values for their local reward functions by random exploration of 300000

timesteps (interactions with world), all learning together (x4.4.2) with random winner

each step. Agents learn Q-values once with all r

i

= 1. Genetic algorithm genotype is a

set of r

i

's. Population size 60. For each individual genotype, multiply base Q-values by

r

i

(x8.1.2), then re-learn W-values (without reference to global reward) then test. Each

agent's W-values are stored in a neural network (one network for each agent). To learn

W-values, do one run of 30000 timesteps (interactions with world) with random winners.

Each agent then replays its experiences 10 times to learn its W-values. Test resultant

creature over 20000 timesteps (interactions with world) to yield score according to global

reward function of x4.3.1. This score is the �tness function to decide who is allowed

reproduce. Evolution for 30 generations found best combination of r

i

's scoring average

14.871 points per 100 timesteps.

Negotiated W-learning (x11) - 8 small agents, with rewards r

i

or 0, as in x8.

Agents learn Q-values for their local reward functions by random exploration of 300000

timesteps (interactions with world), all learning together (x4.4.2) with random winner

each step. Agents learn Q-values once with all r

i

= 1. Genetic algorithm genotype is a

set of r

i

's. Population size 60. For each individual genotype, multiply base Q-values by

r

i

(x8.1.2), then test. No W-values to learn since competition is resolved on the y by

Negotiated W-learning. Test creature over 20000 timesteps (interactions with world) to

yield score according to global reward function of x4.3.1. This score is the �tness function

to decide who is allowed reproduce. Evolution for 30 generations found best combination

of r

i

's scoring average 18.212 points per 100 timesteps.

191

Bibliography

[Aylett, 1995] Aylett, Ruth (1995), Multi-Agent Planning: Modelling Execution Agents,

Papers of the 14th Workshop of the UK Planning and Scheduling Special Interest Group.

[Baum, 1996] Baum, Eric B. (1996), Toward a Model of Mind as a Laissez-Faire Economy

of Idiots, Proceedings of the Thirteenth International Conference on Machine Learning.

[Blumberg, 1994] Blumberg, Bruce (1994), Action-Selection in Hamsterdam: Lessons

from Ethology, Proceedings of the Third International Conference on Simulation of

Adaptive Behavior (SAB-94).

[Brooks, 1986] Brooks, Rodney A. (1986), A robust layered control system for a mobile

robot, IEEE Journal of Robotics and Automation 2:14-23.

[Brooks, 1991] Brooks, Rodney A. (1991), Intelligence without Representation, Arti�cial

Intelligence 47:139-160.

[Brooks, 1991a] Brooks, Rodney A. (1991), Intelligence without Reason, Proceedings of

the 12th International Joint Conference on Arti�cial Intelligence (IJCAI-91).

[Brooks, 1994] Brooks, Rodney A. (1994), Coherent Behavior from Many Adaptive Pro-

cesses, Proceedings of the Third International Conference on Simulation of Adaptive

Behavior (SAB-94).

[Charpillet et al., 1996] Charpillet, Francois; Chevrier, Vincent; Foisel, Remy and Haton,

Jean-Paul (1996), Organizing a Society of Softbots for World Wide Web Applications,

workshop on Arti�cial Intelligence-based tools to help W3 users, Fifth International

World Wide Web Conference.

[Clocksin and Moore, 1989] Clocksin, William F. and Moore, Andrew W. (1989), Exper-

iments in Adaptive State-Space Robotics, Proceedings of the 7th Conference of the

Society for Arti�cial Intelligence and Simulation of Behaviour (AISB-89).

[Dennett, 1978] Dennett, Daniel C. (1978), Why not the whole iguana?, Behavioral and

Brain Sciences 1:103-104.

[Dennett, 1991] Dennett, Daniel C. (1991), Consciousness Explained, Allen Lane, The

Penguin Press.

[Digney, 1996] Digney, Bruce L. (1996), Emergent Hierarchical Control Structures: Learn-

ing Reactive/Hierarchical Relationships in Reinforcement Environments, Proceedings of

the Fourth International Conference on Simulation of Adaptive Behavior (SAB-96).

[Edelman, 1989] Edelman, Gerald M. (1989), The Remembered Present: A Biological The-

ory of Consciousness, Basic Books.

[Edelman, 1992] Edelman, Gerald M. (1992), Bright Air, Brilliant Fire: On the Matter

of the Mind, Basic Books.

[Grefenstette, 1992] Grefenstette, John J. (1992), The Evolution of Strategies for Multi-

192

agent Environments, Adaptive Behavior 1:65-89.

[Holland, 1975] Holland, John H. (1975), Adaptation in Natural and Arti�cial Systems,

Ann Arbor, Univ. Michigan Press.

[Humphrys, 1995] Humphrys, Mark

1

(1995), W-learning: Competition among sel�sh Q-

learners, technical report no.362, University of Cambridge, Computer Laboratory.

[Humphrys, 1995a] Humphrys, Mark (1995), Towards self-organising Action Selection,

Papers of the 14th Workshop of the UK Planning and Scheduling Special Interest Group.

[Humphrys, 1996] Humphrys, Mark (1996), Action Selection in a hypothetical house

robot: Using those RL numbers, Proceedings of the First International ICSC Symposia

on Intelligent Industrial Automation (IIA-96) and Soft Computing (SOCO-96).

[Humphrys, 1996a] Humphrys, Mark (1996), Action Selection methods using Reinforce-

ment Learning, PhD thesis (�rst version), University of Cambridge, Computer Labora-

tory.

[Jackson, 1987] Jackson, John V. (1987), Idea for a Mind, SIGART Newsletter, Number

101, July 1987.

[Kaelbling, 1993] Kaelbling, Leslie Pack (1993), Learning in Embedded Systems, The MIT

Press/Bradford Books.

[Kaelbling, 1993a] Kaelbling, Leslie Pack (1993), Hierarchical Learning in Stochastic Do-

mains, Proceedings of the Tenth International Conference on Machine Learning.

[Kaelbling et al., 1996] Kaelbling, Leslie Pack; Littman, Michael L. and Moore, Andrew

W. (1996), Reinforcement Learning: A Survey, Journal of Arti�cial Intelligence Re-

search 4:237-285.

[Karlsson, 1997] Karlsson, Jonas (1997), Learning to Solve Multiple Goals, PhD thesis,

University of Rochester, Department of Computer Science.

[Lin, 1992] Lin, Long-Ji (1992), Self-Improving Reactive Agents Based On Reinforcement

Learning, Planning and Teaching, Machine Learning 8:293-321.

[Lin, 1993] Lin, Long-Ji (1993), Scaling up Reinforcement Learning for robot control,

Proceedings of the Tenth International Conference on Machine Learning.

[Maes, 1989] Maes, Pattie (1989), How To Do the Right Thing, Connection Science 1:291-

323.

[Maes, 1989a] Maes, Pattie (1989), The dynamics of action selection, Proceedings of the

11th International Joint Conference on Arti�cial Intelligence (IJCAI-89).

[Mataric, 1994] Mataric, Maja J. (1994), Learning to behave socially, Proceedings of the

Third International Conference on Simulation of Adaptive Behavior (SAB-94).

[McFarland, 1989] McFarland, David (1989), Problems of Animal Behaviour, Longman.

[Metcalfe and Boggs, 1976] Metcalfe, Robert M. and Boggs, David R. (1976), Ethernet:

Distributed Packet Switching for Local Computer Networks, Communications of the

ACM 19:395-404.

[Minsky, 1986] Minsky, Marvin (1986), The Society of Mind, Simon and Schuster, New

York.

[Moore, 1990] Moore, Andrew W. (1990), E�cient Memory-based Learning for Robot

Control, PhD thesis, University of Cambridge, Computer Laboratory.

1

All my publications are at:

http://www.cl.cam.ac.uk/~mh10006/publications.html

193

[Ono et al., 1996] Ono, Norihiko; Fukumoto, Kenji and Ikeda, Osamu (1996), Collective

Behavior by Modular Reinforcement-Learning Animats, Proceedings of the Fourth In-

ternational Conference on Simulation of Adaptive Behavior (SAB-96).

[Ray, 1991] Ray, Thomas S. (1991), An Approach to the Synthesis of Life, Arti�cial Life

II.

[Ring, 1992] Ring, Mark (1992), Two Methods for Hierarchy Learning in Reinforcement

Environments, Proceedings of the Second International Conference on Simulation of

Adaptive Behavior (SAB-92).

[Rosenblatt, 1995] Rosenblatt, Julio K. (1995), DAMN: A Distributed Architecture for

Mobile Navigation, Proceedings of the 1995 AAAI Spring Symposium on Lessons

Learned from Implemented Software Architectures for Physical Agents.

[Rosenblatt and Thorpe, 1995] Rosenblatt, Julio K. and Thorpe, Charles E. (1995), Com-

bining Multiple Goals in a Behavior-Based Architecture, Proceedings of the 1995 Inter-

national Conference on Intelligent Robots and Systems (IROS-95).

[Ross, 1983] Ross, Sheldon M. (1983), Introduction to Stochastic Dynamic Programming,

Academic Press, New York.

[Rummery and Niranjan, 1994] Rummery, Gavin and Niranjan, Mahesan (1994), On-line

Q-learning using Connectionist systems, technical report no.166, University of Cam-

bridge, Engineering Department.

[Sahota, 1994] Sahota, Michael K. (1994), Action Selection for Robots in Dynamic En-

vironments through Inter-behaviour Bidding, Proceedings of the Third International

Conference on Simulation of Adaptive Behavior (SAB-94).

[Scheier and Pfeifer, 1995] Scheier, Christian and Pfeifer, Rolf (1995), Classi�cation as

Sensory-Motor Coordination, Proceedings of the 3rd European Conference on Arti�cial

Life (ECAL-95).

[Selfridge and Neisser, 1960] Selfridge, Oliver G. and Neisser, Ulric (1960), Pattern recog-

nition by machine, Scienti�c American 203:60-68.

[Singh, 1992] Singh, Satinder P. (1992), Transfer of Learning by Composing Solutions of

Elemental Sequential Tasks, Machine Learning 8:323-339.

[Singh et al., 1994] Singh, Satinder P.; Jaakkola, Tommi and Jordan, Michael I. (1994),

Learning without state-estimation in Partially Observable Markovian Decision Pro-

cesses, Proceedings of the Eleventh International Conference on Machine Learning.

[Sporns, 1995] Sporns, Olaf (1995), personal communication.

[Steels, 1994] Steels, Luc (1994), A case study in the Behavior-Oriented design of Au-

tonomous Agents, Proceedings of the Third International Conference on Simulation of

Adaptive Behavior (SAB-94).

[Sutton, 1988] Sutton, Richard S. (1988), Learning to Predict by the Methods of Temporal

Di�erences, Machine Learning 3:9-44.

[Sutton, 1990] Sutton, Richard S. (1990), Integrated Architectures for Learning, Plan-

ning and Reacting Based on Approximating Dynamic Programming, Proceedings of the

Seventh International Conference on Machine Learning.

[Sutton, 1990a] Sutton, Richard S. (1990), Reinforcement Learning Architectures for An-

imats, Proceedings of the First International Conference on Simulation of Adaptive

Behavior (SAB-90).

[Tan, 1993] Tan, Ming (1993), Multi-Agent Reinforcement Learning: Independent vs. Co-

operative Agents, Proceedings of the Tenth International Conference on Machine Learn-

194

ing.

[Tesauro, 1992] Tesauro, Gerald (1992), Practical Issues in Temporal Di�erence Learning,

Machine Learning 8:257-277.

[Tham and Prager, 1994] Tham, Chen K. and Prager, Richard W. (1994), A modular Q-

learning architecture for manipulator task decomposition, Proceedings of the Eleventh

International Conference on Machine Learning.

[Todd et al., 1994] Todd, Peter M.; Wilson, Stewart W.; Somayaji, Anil B. and Yanco,

Holly A. (1994), The blind breeding the blind: Adaptive behavior without looking,

Proceedings of the Third International Conference on Simulation of Adaptive Behavior

(SAB-94).

[Tyrrell, 1993] Tyrrell, Toby (1993), Computational Mechanisms for Action Selection,

PhD thesis, University of Edinburgh, Centre for Cognitive Science.

[Varian, 1993] Varian, Hal R. (1993), Intermediate Microeconomics, W.W.Norton and Co.

[Watkins, 1989] Watkins, Christopher J.C.H. (1989), Learning from delayed rewards, PhD

thesis, University of Cambridge, Psychology Department.

[Watkins and Dayan, 1992] Watkins, Christopher J.C.H. and Dayan, Peter (1992), Tech-

nical Note: Q-Learning, Machine Learning 8:279-292.

[Weir, 1984] Weir, Michael (1984), Goal-Directed Behaviour, Gordon and Breach.

[Whitehead et al., 1993] Whitehead, Steven; Karlsson, Jonas and Tenenberg, Josh (1993),

Learning Multiple Goal Behavior via Task Decomposition and Dynamic Policy Merging,

in Connell and Mahadevan, eds., Robot Learning, Kluwer Academic Publishers.

[Wilson, 1990] Wilson, Stewart W. (1990), The animat path to AI, Proceedings of the

First International Conference on Simulation of Adaptive Behavior (SAB-90).

[Wixson, 1991] Wixson, Lambert E. (1991), Scaling reinforcement learning techniques via

modularity, Proceedings of the Eighth International Conference on Machine Learning.

195

