
Constructing an animat mind using 505 sub-minds 
from 234 different authors 

 
Ciarán O'Leary*  Mark Humphrys**  Ray Walshe**  

*School of Computing 
Dublin Institute of Technology 

Kevin St. 
Dublin 8 
Ireland 

www.comp.dit.ie/coleary 

**School of Computing 
Dublin City University 

Glasnevin 
Dublin 9 
Ireland 

computing.dcu.ie/~humphrys 
computing.dcu.ie/~ray 

 

Abstract 
 

The World-Wide-Mind (WWM) is a scheme for putting 
minds (by which we mean the software to drive a real 
or virtual agent) online for remote re-use by third 
parties. Although the animat community favours the 
extension of existing agent minds in an ongoing 
process, there is currently no easy way to re-use minds 
built by other authors. If re-use became the norm, it is 
suggested that larger, more diverse and more complex 
minds could be built. 
   This paper describes an ongoing project that uses 
WWM technology to develop a novel set of minds that 
incorporate a range of algorithms and techniques. We 
demonstrate that it is possible to evolve superior minds 
by the artificial selection and combination of existing 
online minds. 
   The project that is described here involved 234 
authors who developed 505 different minds for the 
virtual animal in a re-implementation of Tyrrell’s 
Simulated Environment (Tyrrell, 1993). These minds, 
which were developed by two classes of undergraduate 
Computer Science students, were subsequently selected 
based on their performance in the virtual world, and 
integrated into larger minds. At the time of writing the 
most successful mind developed used as components 
the two sub-minds that most successfully satisfied the 
animal’s two main goals. Since a huge number of 
combinations of minds is possible, it is important that 
the work is distributed among a community of 
researchers. The architecture of the World-Wide-Mind 
makes this possible. 
 

1.   Introduction 
 
The World-Wide-Mind (WWM) (Humphrys and O’Leary, 
2002) is a scheme for putting animat minds online for 
remote re-use by third parties. Although the animat 
community favours the extension of existing agent minds in 

an ongoing process (Wilson, 1990), there is currently no 
easy way to re-use minds built by other authors (Guillot and 
Meyer, 2000). If re-use became the norm, it is suggested 
that larger, more diverse and more complex minds could be 
built. 
   This paper describes an ongoing project that uses WWM 
technology to develop a novel set of minds that incorporate 
a range of algorithms and techniques. We demonstrate that 
it is possible to evolve superior minds by the artificial 
selection and combination of existing minds written by 
diverse authors, in a way that would not previously have 
been possible.  
 

1.1   Project Description 
 
The ongoing project that is described here has so far 
involved 234 authors who each developed minds (or action 
selection mechanisms) for the virtual animal in a re-
implementation of Tyrrell’s Simulated Environment 
(Tyrrell, 1993). Each author (the majority of whom were 
undergraduate Computer Science students) is permitted to 
develop any number of minds, which are then made 
available online, as web services. Since the minds are 
online, third parties can select a specific mind and run it in 
the virtual world, located at w2m.comp.dit.ie. This 
effectively means plugging the mind into the animal in the 
virtual world, and letting it select the actions at each point in 
time. The score that is achieved by each mind in each run is 
recorded in an online scoreboard that can be viewed by all 
other authors. The scoreboard had two effects (i) it 
introduces an element of competition between authors that 
encourages them to write improved versions of their minds, 
and (ii) it identifies for authors the best minds to incorporate 
into their own minds as sub-minds or modules.  
 

1.2   MindM Services 
 
Authors are actively encouraged to “cheat”  or use other 
author’s minds as modules in their own minds. This type of 



integration is made possible through remote reuse of online 
components. The manner in which existing minds can be 
integrated into new minds takes a number of forms. For 
example an author can select the two minds at the top of the 
scoreboard and wrap a high level mind around them. The 
high level mind will make the decision on which sub-mind 
to call at which point in time, resulting in a division of the 
problem state-space between the two sub-minds. Obviously 
this strategy can be employed with any number of sub-
minds. Using the terminology introduced in (Humphrys, 
2001), this is a MindM service. 
   A number of other strategies involving varying levels of 
competition between sub-minds are described in (Humphrys 
and O’Leary, 2002) but have not been tried out as part of 
this project, for reasons that will be described later. 
   At the time of writing 505 minds had been written and 
made available for re-use online. Of these, less than 5% 
were MindM services. In total, the scoreboard contains 4684 
runs, meaning that the average number of runs for each 
mind was 9.28 (however, many minds would have been 
abandoned by their authors after a very small number of 
runs). In order to assess each individual mind correctly, a 
much higher number of runs would be necessary, but very 
difficult to carry out given the time required (for statistically 
sound results, Tyrrell (1993) tested each action selection 
mechanism he implemented 1650 times).  
   For this reason, we rely on the community of authors, or 
interested third parties to run the tests. They do so by 
selecting their mind, or a mind they are interested in and 
running it in the world. Over time the better minds will rise 
up the scoreboard at the expense of the poorer minds. These 
better minds are then more likely to get artificially selected 
for inclusion in a MindM service. In this way, we expect to 
see the evolution over time of successively improved minds 
(Darwin, 1859, Ch. 1).  
   The results outlined here are based on ten MindM services 
developed by the first author. They are accompanied by a 
description of the strategy used for developing each MindM 
service based on the scores available in the scoreboard. In 
addition we describe how these MindM services, which are 
also available online, will be subject to the same sort of 
evolution by artificial selection that the original minds are.  
 

1.3   Roadmap 
 
This paper will proceed as follows. Section 2 provides an 
overview of the World-Wide-Mind project, including a 
detailed description of the architecture. Section 3 describes 
Tyrrell’s Simulated Environment (SE), as a re-
implementation of this virtual world was used for the 
research outlined in this paper. Section 4 shows how the 
implementation of Tyrrell’s SE was put online as part of the 
World-Wide-Mind architecture. This includes a description 
of the format for the scoreboard that is core to evolving the 
minds. Section 5 provides a discussion of the ongoing 
project that started with 234 diverse authors. We explain 
how their minds were made available online, subsequently 

run and recorded in the scoreboard. These minds were then 
selected based on their scores, and integrated into MindM 
services, according to different strategies, as described in 
section 6. Section 7 provides the results for these MindM 
services. Section 8 provides a discussion of these results. 
Section 9 describes further work, and section 10 will place 
our work in context by showing its relationship to other 
modular forms of artificial minds and agent architectures. 
 

2   Wor ld-Wide-M ind 
 
The World-Wide-Mind (WWM) is a scheme for facilitating 
the development of large minds through publishing virtual 
worlds and sub-minds online as web services. A web service 
is effectively a programming language object whose 
methods are invoked over HTTP, the language of the web 
rather than being invoked in a local environment. The 
WWM specification (Humphrys, 2001a) defines three types 
of entity, a world service, a mind service and a client. 
Messages sent between entities are composed in the XML-
like protocol of the WWM named SOML, the Society of 
Mind Markup Language (this is an update of the protocol 
referred to as AIML in (Humphrys and O’Leary, 2002b)). 
 

2.1   World service 
 
A world service is a virtual world (real worlds involving 
embodied agents are possible, though none are implemented 
as yet) that supports a set of SOML messages for retrieving 
the state of the world, and for instructing the agent in the 
world to execute a given action. For most problems, the 
state refers to the current perceptions of the agent in the 
world, although this could obviously be extended to include 
any type of information about the world. The action will be 
some value or symbol that can be interpreted by the agent in 
the world. 
    A world service defines its own format for state and 
action, so that when another entity queries it for its state, the 
requesting entity must parse the state according to the rules 
defined for that particular service. Similarly the world 
service will define its own format for its actions. This 
removes the requirement for the type of symbolic languages 
used for agent communication in multi-agent systems and 
on the Semantic Web, as discussed in (O’Leary and 
Humphrys, 2002).  
 

2.2   Mind service 
 
A mind service generally represents an action taking 
mechanism developed for a given type of world service. The 
mind service will support the necessary SOML messages to 
receive the state from the world service, parse it according 
to the format defined for the world service, and then suggest 
one of the actions possible for that particular world.  
   Once a mind is created there are three options available to 
the mind author. Firstly they can put the mind online with 
no additional information describing the algorithm used by 



the mind. This effectively means that the mind will be used 
as a black box and it can only be selected for reuse in a 
MindM service based on its performance.  
   Secondly, the author of a mind service could publish 
details on its implementation on an accompanying web site. 
MindM authors who wished to reuse this mind as a 
component could then design their MindM to take advantage 
of the published attributes of the mind. 
   Thirdly, minds could propose an action accompanied by 
some additional information to help in the higher level 
action selection. Such minds (referred to as MindI services 
in (Humphrys and O’Leary, 2002)) are aware that they may 
not be the only mind involved in selecting actions for a 
particular body, and would need to be designed 
appropriately. For example, Humphrys (1997) describes 
how sub-minds that use reinforcement learning can calculate 
values that represent how much they want to be obeyed in 
particular states.  
   In the experiment carried out here, minds are not 
accompanied by web sites describing their algorithm, nor do 
they propose weights with their chosen actions, and as a 
result must be reused as black boxes. Future research will 
address methods for proposing weights in societies of sub-
minds that implement heterogeneous algorithms. 
 

2.3   Client 
 
The client is the entity that is responsible for plugging a 
mind into an agent in a world. It does this by selecting a 
world service at a given URL and selecting a mind service 
at another URL. It then informs both the world service and 
the mind service that it intends to start a run involving them. 
Both services will typically create new instances of the 
algorithm that they represent and return a unique ID for this 
instance to the client. The world service algorithm 
implements the problem (e.g. Tyrrell’s SE) and the mind 
service algorithm implements a solution (one author’s 
mind).  
   The client will use this ID in all communication with both 
services. Both IDs along with both URLs uniquely identify 
the subsequent interaction between the entities, which is 
termed a run. A run consists of constant iterations of the 
following steps: 
 
(i) Client requests the world service to return its state. 
(ii) Client takes the world state and sends it to mind 

service, which then returns the action that it 
suggests for the given state. 

(iii) Client takes the action selected by the mind and 
sends it to the world service, instructing it to 
execute this action in the world. 

 
This process continues until the world service sends a 
message to the client to say that the run has ended. The 
client will then send a message to the mind to tell it that it is 
no longer needed for this run. 

   During a run, the world service does not need to know 
which mind service is being used to select its actions 
(although in reality as we’ ll see, this information is sent so 
that it can be recorded on the scoreboard). The mind service 
will normally not need to be sent any information regarding 
the world service, since it will have been created specifically 
for that particular problem. The client will only need to 
know the URL of both services, but will not need to 
understand anything about the representation of the state or 
action for the world, since its only function is to pass this 
data between the services. 
 

2.4   SOML 
 
The Society of Mind Markup Language (SOML) is the 
XML-like language that defines the general format for the 
messages that are sent between entities on the WWM. The 
protocol is defined in full in (O’Leary, 2003). In brief, the 
following are the core messages: 
 
(i) newrun: Can be sent to any type of service to 

request that a new instance be created. 
(ii) endrun: Can be sent to any type of service to 

inform it that a given run has ended. This type of 
message can also be sent by a world service to a 
client to inform it that the run has ended in the 
world. 

(iii) getstate: Can be sent to a world service to 
request that its state be returned. 

(iv) getaction: Can be sent to a mind service to 
request that an action be suggested for the state that 
is contained in the request.  

(v) takeaction: Can be sent to a world service to 
instruct it to take the action contained in the 
request. 

(vi) getdescription: Can be sent to any type of 
service. The response will typically contain 
information such as the author of the service, the 
date it was last modified and so on. 

(vii) getscoreboard: This request can contain a 
URL of a given mind and a number (x). When 
received by a world service, the top x scores 
achieved by the mind identified by the URL should 
be returned. If the request does not contain any 
parameters, all scores should be returned. The 
format of the score is also defined by the service, 
as described in the section below. 

 

2.5   Scoreboard 
 
As described above, world services should support a request 
named getscoreboard. This should return the scores 
achieved by a given mind, or indeed all scores achieved in 
the world. The world service can define its own format for 
its score, the only requirement being that the scoreboard 
should be ordered in some way that places better performing 



minds closer to the top of the scoreboard than those minds 
that they outperform.  
   One possible way of constructing a scoreboard is to record 
every run in the world, with the best run at the top. Using 
this approach the size of the scoreboard grows very large 
very quickly (this is the approach we used, and the 
scoreboard is already over 2MB in size), and the ordering on 
the scoreboard may appear misleading. For example, the 
mind that scored the best run may have been very fortunate 
in the world that it was given for that particular run, and 
may perform badly in most other instances of the world.  
   Another possibility would be to record statistical 
information on the performance of each mind, so that 
instead of recording every score, the average and standard 
deviation of its scores are recorded, and the scores are 
ordered appropriately, more accurately reflecting the 
relative performances of the minds.  
   We used the first format for this experiment. Since all 
information is recorded in the scoreboard, and is available to 
others using the getscoreboard request, anyone who is 
interested can perform their own statistical analysis of the 
scores and select the best mind based on this.  
   The information that is recorded for each score includes 
the URL of the mind service, the date and time of the run, 
the name and contact details (e-mail/URL) of the author of 
the mind, the name and contact details of the user, or person 
who started the run and most importantly the score 
achieved, in a format decided upon by the author of the 
world service.  
 

3   Problem Domain 
 
At present there are two world services online that conform 
to the latest version of SOML. The first of these is a simple 
blocks world implementation, for which twelve mind 
services have been developed, including two MindM 
services. A description of the problem and the design of the 
minds is discussed in earlier work (O’Leary and Humphrys, 
2003). 
   A second available world service, which is the problem 
world at the centre of the work described here, is a re-
implementation in Java of Tyrrell’s Simulated Environment 
(SE) (Tyrrell, 1993). The SE will be described in this 
section. Its implementation as a world service will be dealt 
with in the next section. 
 

3.1   Tyrrell’s Simulated Environment 
 
Tyrrell’s PhD thesis examined a number of different action 
selection mechanisms when applied to a complex, multi-
goal problem. In order to do this he wrote a virtual 
environment that modelled an animal in a heavily populated, 
dangerous environment. The primary goal of the animal was 
to mate, as this would ultimately determine how likely it 
was to pass on its genes to subsequent generations. 
However, in order to mate the animal needed to survive in 
the world long enough to be presented with sufficient 

opportunities to court and mate with other members of its 
own species.  
   The world which the animal occupied had fifteen different 
features, including food and water (both of which could be 
toxic), a den, cover and shade. It also featured several 
different types of animal; predators and non-predatory 
animals that needed to be avoided, prey that could be 
consumed and animals of the same species that could be 
mated with. The world experienced changes in weather and 
also cycled through different times of day. 
   The animal had its own models of perception and 
navigation that provided it with information about its 
surrounding environment and memories of places that it had 
previously visited. It was also provided with motor control, 
or the ability to convert a chosen action into the necessary 
movements of the body. Each of these three systems were 
error-prone, in that the animal could misperceive features in 
its immediate environment or forget about a feature it had 
encountered. Also, any action that it chose was subject to a 
low probability of being incorrectly executed.  

 
3.2   Action Selection 
 
At each time-step the animal was required to choose one of 
35 actions to execute. These included 16 different moving 
actions for travelling at different speeds in different 
directions, 9 different looking actions that could improve its 
perceptions for a given direction, or allow it to quickly scan 
its environment for predators, and various actions for eating, 
sleeping, resting, cleaning and mating.  
   The animal should choose the action that is most likely to 
increase its expected future genetic fitness i.e. the number of 
times it mates in this case. In order to do this the animal 
should maintain good health by eating and cleaning. It 
should also avoid an early death by hiding from predators 
and looking out for other dangerous places such as cliffs and 
marshes. In addition it should try to make its way home at 
nighttime to sleep.  
   Tyrrell implemented six different algorithms for the 
animal’s action selection in the environment. His own 
algorithm which he named the Extended Rosenblatt and 
Payton algorithm performed best in the tests he conducted. 
His results were later improved upon by Bryson with her 
Edmund algorithm (Bryson, 2000).  
 

3.3   Discussion 
 
It is obvious that the action selection problem for Tyrrell’s 
SE is difficult. All approaches to solving it so far have 
focussed on building a single algorithm that can account for 
all the goals that must be satisfied by the animal. What we 
propose is that rather than designing the best solution from 
the beginning, we start with a solution and then add to that 
in subsequent implementations. This would be a difficult 
task if every author were required to understand every 
implementation that came before him. We intend to examine 
if it is possible to integrate solutions that we do not 



understand completely or at all, that are judged simply on 
their performance. This may become easier if the algorithms 
are available for remote re-use, online. 
 

4   Tyr rell’s SE online 
 
An implementation of Tyrrell’s SE is available online as a 
WWM world service at w2m.comp.dit.ie. When queried for 
its state it will return a vector on numbers representing the 
animal’s perceptions and memories and well as some 
additional information about the environment (it is given all 
the information that was available to the action selection 
mechanisms developed by Tyrrell). 
   It will accept as an action any number from 0 to 34, each 
representing one of the 35 actions that can be selected by the 
action selection mechanism. For a detailed explanation of 
state and action see w2m.comp.dit.ie. 
   Any mind service that will be created for this 
implementation of the SE should accept the state, process it 
and return an action i.e. it will serve as an action selection 
mechanism, except it will be located somewhere else on the 
Internet.  
 

4.1 Scoring in the SE 
 
Every run in the world service is recorded on the 
scoreboard, including the URL of the mind, author and user 
details as explained. The scores are ranked according to two 
criteria, firstly the number of times that the animal mated in 
the environment during that particular run, and secondly 
according to how long the animal survived in the 
environment, in time steps.  
   In addition, various other items are recorded for each run. 
This information is useful in developing a profile for the 
mind that was involved in the run, which will be used when 
we attempt to integrate individual minds into MindM 
services. 
   This additional information includes (i) the number of 
times that the animal successfully ate food or drank water, 
(ii) the number of times that the animal ate toxic food or 
drank toxic water, (iii) the number of times the animal 
caught and consumed prey, (iv) the number of times the 
animal was injured by predators, other animals or by 
visiting dangerous places and (v) the amount of time that the 
animal spent in the environment without knowing how to 
return to its den. 
   In addition, for each run in the world, the number of times 
that each of the 35 actions was chosen is recorded. Using all 
of this information it is possible to infer to some degree the 
type of strategy that was used by the mind. The more 
information that is recorded, the easier it is to build up this 
type of profile, but there are real limits that must be 
observed. As mentioned earlier, the size of the scoreboard is 
already over 2MB in size. The more information that is 
recorded the larger this will grow. 
   A decision was made to record the data for each run rather 
than simply maintain statistical information for each mind. 

This meant that anyone interested in using a particular mind 
could perform their own analysis of the runs conducted 
using the mind, and develop their own profile for it. This 
also meant that the scoreboard was ordered according to 
each run, rather than the performance of each mind in all its 
runs collectively.  
   A HTML version of the scoreboard is available at 
w2m.comp.dit.ie. The SOML for the scoreboard can be 
retrieved using the getscoreboard request. This will 
contain all the additional information recorded for each run. 
 

5    Format of exper iment 
 
The world service is publicly available for anyone to use (at 
w2m.comp.dit.ie), and anyone is free to develop a mind 
service to work with it, once they observe the correct 
formats for state and action. We now explain how the first 
set of minds were built. 
 

5.1 Community of Students 
 
In order to get a large number of minds online for the 
purposes of this research, an assignment was given to two 
classes of undergraduates studying for an honours degree in 
Computer Applications at Dublin City University. 
Altogether, over two hundred students developed mind 
services for the version of Tyrrell’s SE that is online. 
   In order to focus on the action selection aspect of the 
assignment rather than the networking (relatively trivial 
though it is) the students were given a tool kit that they 
could use to develop the mind and put it online. The 
majority of the students developed their software in this 
way, although a minority did implement minds using web 
technologies such as PHP and Java Servlets.  
   Students were permitted to create as many different mind 
services as they wanted over a period of six weeks. At the 
time of writing (two weeks after the deadline for the 
assignment) 505 had been put online. Once a mind was put 
online, it was automatically run in the world to record some 
account of its performance. Many minds were then run 
again several times by their authors or others who wanted to 
observe the performance of the mind, with a view to 
integrating the mind in their own MindM services. Some 
students developed such minds, although this can only be 
inferred from the response times of the mind service (it is 
not unusual for a MindM service to take over an hour and a 
half to perform a run in the world, in particular when it is 
calling on more than one sub-mind).  
 

5.2   Artificial Selection of Minds 
 
As the experiment continued, the better minds rose to the 
top of the scoreboard. Over a prolonged period of time, the 
artificial selections made by authors and users will result in 
a larger number of runs in the better minds, which will in 
turn result in their being selected more often for inclusion in 



MindM services, and consequently the creation of better 
minds. 
   In addition, since there is useful information apart from 
scores recorded on the scoreboard, authors can observe the 
strategies that are employed by the better minds (in one 
case, it would appear the sleeping was preferred to eating in 
order to live longer) and try to employ these strategies in the 
minds they are authoring without remotely re-using the 
original mind.  
 

6   Integration strategies 
 
Using the large set of mind services that had been put 
online, we hand designed a further ten MindM services. The 
first problem that we are faced with in developing a MindM 
service is in identifying at least two existing minds that 
could work together. A second problem is in identifying 
when to select the action proposed by either mind. One 
simple approach would be to start a run in one mind and let 
it run for a finite number of steps, then stop it and start 
another mind which will then run and so on. A problem with 
this is that everything that the mind may have learned up to 
that point from its experience of the environment is lost. A 
second approach might be to start both minds and present 
both of them with the state of the world at every time-step, 
letting them all suggest an action, but only select the action 
proposed by one of them, possibly based on a voting 
strategy. At least with this strategy all sub-minds get to 
experience the environment for the entire duration of the 
run, but now all the minds think that they are being listened 
to at every point in time, which is clearly not the case.  
   We describe here a number of different approaches we 
took to selecting and integrating two minds.  
 

6.1   MindM I 
 
The first strategy used for building a MindM service was to 
select the mind that had achieved the best run in the world, 
i.e. the one at the top of the scoreboard, and examine its 
entries in the scoreboard. From this we were able to develop 
a profile of the mind, based on the actions that it had chosen 
in its runs as well as the additional pieces of information 
described above.  
   The profile that was developed for the mind was based on 
its average performance across all its runs, as well as 
analysis of individual scores. A summary of its profile is 
given here 
 
1. Lives for an average of seven days in the world (a day 

is 500 time steps). 
2. Often employs sleeping as a method for living long, and 

consequently misses out on some mating opportunities. 
3. Favours drinking over eating. Does not eat enough. 
4. Efficient cleaner.  
5. Has not been injured by other animals or dangerous 

places, possibly because they have not been 
encountered yet. Has not used its move fast actions at 

all, which implies that it has not had to escape from 
predators. 

 
   Based on this we selected a mind that could compensate 
for the deficiencies highlighted in the above profile. We 
identified the failure of the animal to eat enough to be its 
primary fault, so we analysed the scoreboard to find a mind 
that regularly selects eating actions, and still occupies a high 
position on the scoreboard. The mind selected was the one 
that ate the most on average in a run.  
   To integrate the two minds, we employed a simple 
strategy. We started a run in both minds at the beginning of 
our run. We selected the action of our main mind the 
majority of the time. We selected the action of our second 
mind whenever it suggested an eating action.  
   There are obviously many shortcomings in this approach. 
If the first mind is pursuing some goal such as avoid 
predator, and the second mind suggests an eating action 
then the animal will stop to eat, and probably end up eaten 
himself. However, the second mind we selected is relatively 
high up on the scoreboard, so it would be fair to assume that 
it is aware of the presence of the predator as well, and would 
not select an eating action while a predator was close.  
 

6.2   MindM II 
 
A second approach we took to developing a MindM service 
was to select, once again, the mind at the top of the 
scoreboard, but this time make a different judgement on 
how to select an eating mind for it. In this case we selected 
the mind that was the most successful eater i.e. the one that 
ate non-toxic food every time that it selected an eating 
action. Other minds had selected eating actions when it was 
incorrect to do so. We used the same approach to integrating 
the minds i.e. the eater was only listened to when it 
suggested an eating action. 
 

6.3   MindM III 
 
For this mind, we selected as the primary mind the one 
which had the best average score, rather than the highest 
individual score. We created a profile of this mind and saw 
that it was quite similar to the mind described in section 6.1 
above. It is not surprising that two successful minds should 
have a similar strategy, even if this is not the best strategy. 
One may itself be a MindM service that wraps up the other 
mind, using the actions that it suggested the majority of the 
time. Alternatively, the author of one of the minds may have 
observed that the other mind was achieving good scores on 
the scoreboard. Then using the information in the 
scoreboard, he may have developed his own profile of the 
mind and attempted to mimic that strategy in his own 
implementation. Another reason may of course be that they 
both arrived at the same design independently. 
   We then integrated the mind we had selected at this stage 
with the successful eater we had identified for MindM II 
above, using the strategy described earlier.  



 

6.4   MindM IV & V 
 
In this case we picked another successful eater that had a 
better average overall performance in the world than the 
eater used above. We integrated it with the two main minds 
we had been using so far to give MindM IV and MindM V. 
 

6.5   MindM VI 
 
In order to score well in the world the animal must survive 
for a long time and mate as frequently as possible. With this 
in mind we selected two minds which we felt would satisfy 
these two goals best. The first mind is the one that survived 
longest in the world on average, and the second one also 
lived quite long (more than two days) but mated more 
frequently. We integrated them in a manner similar to the 
minds built earlier, obeying the actions of the first mind in 
all cases except where the second mind proposed a mating 
related action (courting or mating).  
 

6.6   MindM VII & VIII 
 
Some mind implementations focussed entirely on mating to 
the cost of all other goals. These minds did not survive long 
in the world, but mated more frequently in the short period 
of time that they did survive. This suggested that they were 
better at identifying good mating opportunities since they 
were not concerned with other goals. We picked one such 
mind and integrated it with the main mind used in section 
6.5. This was MindM VII.  
   We then selected another frequently mating mind that 
appeared to have an interest in a limited number of other 
goals such as eating and cleaning. We integrated this with 
our long living mind, taking its suggestion whenever it 
proposed a mating related action, and named it MindM VIII. 
 

6.7   MindM IX 
 
A MindM service can call on, or wrap up, any number of 
sub-minds that it invokes remotely. The interface to these 
minds remains the same regardless of how they are 
implemented, including situations where the sub-minds are 
themselves MindM services. For the construction of MindM 
IX we integrated MindM II as described above with a 
frequent mater. This whole mind then uses three sub-minds 
to select its actions, with the frequent mater only being 
listened to when it proposes a mating action. 
 

6.8   MindM X 
 
The obvious shortcoming of all the minds described thus far 
is that a mind that has been identified as being strong in 
achieving a particular goal is only called upon when it 
proposes the final consummatory action. This is because it 
is difficult to identify when a mind is suggesting an 

appetitive action that will ultimately lead to the achievement 
of the goal. For example, although we have used sub-minds 
that we identified as being best for solving the eating or 
mating goals, we have not accepted the actions that they 
proposed when they may have started to solve that particular 
goal. The reason for this is that we have no way of knowing 
that they are beginning to solve that goal, since the only 
information we are provided with from the sub-mind is the 
action that is proposed.  
   In an attempt to address this particular issue, we 
implemented a MindM service that performed its arbitration 
using the Drives algorithm that Tyrrell had developed for 
the Simulated Environment. This algorithm worked by 
taking all the animal’s perceptions and memories and 
calculating simple motivational strengths or drives for each 
of the sub-goals such as finding food, water or mates, or 
avoiding predators or dangerous places.  
   For our implementation, we calculated the drive for each 
sub goal and selected a sub-mind based on the winning, or 
highest drive. Whenever mating won the competition we 
selected a frequently mating mind; if eating won we selected 
a successful eater, and for all other drives we defaulted to 
the most successful overall mind.  
   Clearly, any number of strategies could be used for 
determining when to switch between sub-minds, as will be 
discussed in the Further Work section below. This MindM 
service was simply a demonstration of one possible strategy. 
 

6.9   Discussion 
 
We have outlined how ten different MindM services have 
been developed from existing components. As can be seen 
there are two main issues involved in the creation of a 
MindM service using minds in this black box fashion: 
 
(i) Profiling each mind based on its performance in 

the world. The profile should provide sufficient 
information to be able to identify what goals are 
handled well by each mind. 

(ii) Deciding when to switch between minds. In the first 
nine implementations above, minds were selected 
and deselected based entirely on an action that 
could be related to only one goal. When appetitive 
actions can be associated with more than one goal 
(e.g. move towards direction of nearest mate) it is 
difficult to infer that the sub-mind should be given 
control of the agent.  

 

7   Results 
 
Firstly it should be stated that the implementation of 
Tyrrell’s SE used here is not identical to that used for other 
published results by Tyrrell (1993) and Bryson (2000). The 
first author reimplemented the SE using Java, based on the 
description provided in Tyrrell’s thesis and also his freely 
available C code.  
 



7.1 Tyrrell’s Extended Rosenblatt and 
Payton Algorithm 
 
Tyrrell’s algorithm used a hierarchy of nodes that take input 
from both internal and external stimuli and pass excitation 
on to nodes at lower levels in the hierarchy. Nodes at the 
lowest level represented actions, and at every point, the 
action node with the highest level of activation would be 
selected for execution. This system allowed all actions to be 
considered at each timestep, and for separate parts of the 
creature’s mind to contribute excitation to the same action, 
facilitating the selection of compromise actions, or actions 
that can contribute to the satisfaction of more than one goal. 
Using this algorithm, Tyrrell’s animal mated an average of 
8.09 times in a lifetime. 
 

7.2 Bryson’s Edmund Algorithm 
 
Bryson’s Edmund algorithm was implemented for several 
different versions of the SE. This algorithm allowed the 
creature for focus its attention on the highest priority goal 
that could be addressed in a particular state. For this reason 
it was able to dramatically reduce the amount of 
computation that was required at each timestep, and was 
also able to improve on the results achieved. Bryson feels 
that the simplicity of the implementation leads to a higher 
probability of finding the correct parameters for the system. 
Using this algorithm, Bryson’s animal mated an average of 
9.12 times in a lifetime. 
 

7.3 Implementation of Simple Minds 
 
Although the internal design of each of the minds developed 
for this experiment were not available to the authors of 
MindM services, subsequent assignment submissions by the 
cohort of students contained descriptions of the algorithms 
used. Minds tended to be hand designed, priority based 
algorithms, where the animal checked various goals in 
order, obeying the first one that could be satisfied. The 
ordering which was given to the goals, the manner in which 
an action was selected for a goal, the manner in which it 
could be determined whether a goal should be addressed in 
a particular state and the amount of state that was saved 
between actions determined the relative success of each of 
the minds. Most minds implemented highly reactive 
algorithms, although the most successful individual mind 
maintained its own (more accurate) record of recently 
visited states, in addition to that provided by the world 
service. 
   In total there were 505 minds that were involved in 4684 
runs. The minds were scored firstly on the number of times 
they mated, and secondly on the amount of time-steps they 
survived in the environment. The overall average number of 
times that the animal mated across all runs was 1.23 times. 
The animal lived for an average of 1066 time steps.  

   The top ten minds mated an average of 3.3 times per run, 
and lived for an average of 1916 time-steps. For the top one 
hundred minds these figures were 2.6 and 1686 respectively. 
   The best performing mind mated an average of 3.65 times 
and lived for an average of 1378 time-steps. The mind that 
lived the longest in the environment was able to survive for 
an average of 4413 time-steps, although its strategy was to 
find its den and sleep continuously, consequently it never 
mated. The average lifetime of the longest living mind that 
was also able to mate was 3348 time-steps, spending 36% of 
its time asleep.  
 

7.4 MindM Results 
 
The results achieved in this implementation of the 
Simulated Environment do not rival the results published by 
Tyrrell or Bryson for this particular problem. The scores 
achieved by the best MindM services did however beat the 
scores achieved by all the other minds developed, and did so 
by selecting and integrating these as sub-minds. This point 
will be returned to in the Discussion section. 
   The results achieved by these MindM services are given in 
Table 1 below.  
 

 Average Per formance Best Per formance 
Mind Mated L ived Pos. Mated L ived Pos. 

I 2.67 2365 22 8 3196 25 
II 3.16 2226 9 12 4768 2 
III 2.89 1182 15 10 1936 8 
IV 3.67 1276 2 9 1769 12 
V 2.2 2421 41 5 2886 116 
VI 1.96 2827 61 7 4496 34 
VII 3.7 1539 1 20 3916 1 
VIII 1.53 226 120 6 248 115 
IX 2.24 2776 36 5 4192 127 
X 2.46 979 27 7 2013 47 

 
Table 1: The number of mates, time-steps lives and overall 

positions of each of the ten MindM services. 
 
   MindM VII performs best on average and also reached the 
top of the scoreboard with the best individual score. 
 

8   Discussion 
 
From the results that have been shown it is clear that it is 
possible to create superior minds from existing minds if the 
correct minds are chosen, and if the integration strategy 
suits the algorithms that are being executed by each of the 
minds. In our case, the best performing mind used the mind 
that had lived the longest in the environment and the most 
aggressive mater. An aggressive mater will constantly 
prioritise mating over the pursuit of other goals. The mind 
that it was integrated with appeared to distribute its attention 
among multiple goals. When the two worked together they 
appeared to get the best of both worlds. The mating mind 



sought out opportunities to mate whenever possible, 
whereas the remainder of the time the other part of the mind 
was focussed on ensuring that the creature lived long 
enough to be presented with sufficient opportunities to mate.  
   In many cases minds were put together that did not work 
well, at least with the type of strategy that was used for 
integration. For example, MindM X should have 
outperformed all other minds because of the care that was 
taken in switching between the various sub-minds at the 
correct time. However, in this situation it would seem that 
all that happened was that the sub-minds were interrupted 
while pursuing particular goals that the other minds could 
not pick up on. Even in this situation, the minds that were 
selected for the mating and eating goals were often not the 
ones that actually executed those actions. Better minds, such 
as our winner MindM VII use sub-minds that are very 
different from each-other. It is easier to divide the state-
space between these types of minds, as their respective roles 
are more clearly defined.  
   Tyrrell (1993) and Bryson (2000) both built action 
selection mechanisms that outperformed our collection of 
minds. However, our sub-minds require much more testing, 
as does the re-implementation of Tyrrell’s SE. Also, the 
action selection needs to be more sophisticated. Minds need 
to be designed to co-operate with the types of action 
selection that is taking place in other minds. For example, 
minds may need to flag appetitive and consummatory 
actions, perhaps by returning strengths or W-values 
(Humphrys, 1997) with each action. 
 

9   Fur ther  Work 
 
This work is at a relatively early stage. The assignment that 
was given to the undergraduate students only ended 
recently, thus limiting the time available to develop more 
sophisticated MindM services. However, it is clear that if 
minds are available online as services, they effectively exist 
forever, and can be used by anyone with access to the 
World-Wide-Web. This should mean that over time, as 
more runs get executed and more scores are recorded, it will 
be possible to get a clearer image of the profile of each 
mind. With more information about the profiles of each of 
the minds, it should be possible for interested authors to 
develop better MindM services, and consequently get better 
ideas for how to write minds for the animal. Evolving a 
mind in this fashion is different to developing it as part of a 
single project. Evolution requires time and the cumulative 
effects of much recombination in order to be successful 
(Dawkins, 1986). In nature this happens by natural 
selection. In our situation what is required is the conscious 
selections of a community of interested researchers.  
 

9.1 Integration 
 
Our integration strategies were relatively straightforward, 
with the exception of the drives based mind, which failed to 
perform well in the tests conducted. We intend to examine 

related work in behavior/goal selection and agent 
architectures which can be tried out with our architecture. 
Some of the work in this area is discussed in the Related 
Work section below. 
   Earlier publications discussed the possibility of allowing 
sub-minds exchange numeric weights that express the 
degree to which one sub-mind wants to run at any particular 
point in time. Such a mind could use Hierarchical Q-
Learning (Lin, 1993) or W-Learning (Humphrys, 1997) as 
outlined in (Humphrys and O’Leary, 2002). While 
approaches such as these will be tried for certain problems, 
they may not be appropriate for the research described here, 
in their current form. Firstly, both learning schemes require 
specific types of problems. Tyrrell (1993) outlined why his 
SE is not suitable for these types of algorithms, given the 
size of the state-space and the requirement for experience of 
all different types of states. Secondly, each mind service 
author would need to understand and correctly implement 
the algorithm for proposing an action with a given weight, 
which will be possible in certain domains but was not 
possible here. It may be possible if proxies (Schmidt et. al., 
2000) are wrapped around sub-minds that will then 
implement the required algorithm. 
 

10   Related Work 
 
Bryson (2001) proposes a design methodology named 
Behavior Oriented Design (BOD) that defines an iterative 
engineering approach to the development of complex, 
complete agents. BOD stresses the need for an initial 
decomposition of the agent requirements into a set of sub-
systems and then a continuous revision, weighing the level 
of granularity of each system against the requirement for 
arbitration between these. Such a cyclic approach could be 
applied to our own work in the development of a single 
agent where the requirements are considered in terms of the 
available sub-minds.  
   Other modular forms of agent design, including Brooks 
(1986) and Humphrys (1997) address issues in behavior 
decomposition and arbitration, while the whole animat 
approach to AI (Wilson, 1990) is predicated on the idea of 
starting with simple whole minds to which new components 
are added over time. This is the approach we took to the 
development of MindM services.  
   Work in Internet-agent systems is related to our own in 
that the various components are distributed throughout the 
network. While we have no initial requirement for the type 
of symbolic languages (FIPA, 2002) or complex platforms 
(Poslad et. al., 2000) that are used in this area, we still face 
similar technical issues in terms of network latency.  
   Distributed systems programmers develop components 
and web services that are automatically located and invoked 
by clients, primarily in the area of e-Commerce. A great 
deal of work in this area is now focussed on the 
development of profiles for each of the services that run 
over the Web and more recently the Semantic Web (DAML-
S Coalition, 2002). Such profiles however are written at 



development time by the creators of the service and are not 
automatically inferred and updated from the performance of 
the service.  
 

11.   Summary 
 
Complex minds are necessarily composed of a multitude of 
different algorithms and structures (Minsky, 1986). Such 
minds are difficult to build because the required expertise is 
rarely available to a single project or lab. The World-Wide-
Mind project aims to make it easier to build these types of 
minds, by proposing the online reuse of existing mind 
components.  
   The work described here has shown how a mind can be 
evolved over a period of time by utilising the independent 
expertise and artificial selection of a community of authors.  
 

Acknowledgements 
 
The authors wish to thank the many students from CA3 and 
CAE3 in Dublin City University whose hard work made this 
research possible. All author’s names can be seen on the 
scoreboard at w2m.comp.dit.ie; those used here, and the 
MindM services they were used in are Peter Kehoe (version 
7 of his mind was used in I, II & V, version 10 in VI, VII, 
VIII & X), John Dundon (I), Colin Sheridan (II & III), 
Eugene Gibney (III, IV, VI & X), Lousie O’Nolan (IV & 
V), Mark Ruddy (version 8 used VII, version 9 in VIII), 
Andrew Pimlott (IX) and Michael Dowling (X).  
 
The authors also wish to thank two anonymous reviewers 
for their helpful comments. 
 

References 
 
Brooks, Rodney (1986), A robust layered control system for 
a mobile robot. IEEE Journal of Robotics and Automation 
 
Bryson, Joanna (2000), The Study of Sequential and 
Hierarchical Organisation of Behaviour via Artificial 
Mechanisms of Action Selection, MPhil Dissertation: 
University of Edinburgh 
 
Bryson, Joanna (2001), Intelligence by Design: Principles of 
Modularity and Coordination for Engineering Complex 
Adaptive Agents, PhD Thesis, MIT 
 
DAML Services Coalition (2002), DAML-S: Web Service 
Description for the Semantic Web, in proceedings of First 
International Conference of the Semantic Web (ISWC-02) 
 
Darwin, Charles (1859), The Origin of Species. 
 
Dawkins, Richard (1986), The Blind Watchmaker: Why the 
Evidence of Evolution Reveals a Universe Without Design, 
W.W. Norton & Company  
 

FIPA (2002). FIPA ACL message structure specification. 
http://www.fipa.org/specs/fipa00061/SC00061G.html 
 
Guillot, A. and Meyer, J.-A. (2000), From SAB94 to 
SAB2000: What's New, Animat?, Proc. 6th Int. Conf. on 
Simulation of Adaptive Behavior (SAB-00). 
 
Humphrys, Mark (1997) Action Selection methods using 
Reinforcement Learning, PhD Thesis, University of 
Cambridge  
 
Humphrys, Mark (2001), The World-Wide-Mind: Draft 
Proposal, Dublin City University, School of Computing, Tech 
Report CA-0301 computing.dcu.ie/~humphrys/WWM/ 
 
Humphrys, Mark and O'Leary, Ciarán (2002), Constructing 
complex minds through multiple authors, Proc. 7th Int. Conf. 
on Simulation of Adaptive Behavior (SAB-02) 
 
Lin, L-J (1993), Scaling up Reinforcement Learning for 
robot control, 10th Int. Conf. on Machine Learning 
 
Minsky, Marvin (1985), The Society of Mind, Simon and 
Schuster  
 
O'Leary, Ciarán and Humphrys, Mark (2002), Lowering the 
entry level: Lessons from the Web and the Semantic Web for 
the World-Wide-Mind, 1st Int. Semantic Web Conf. (ISWC-
02) 
 
O'Leary, Ciarán and Humphrys, Mark (2003), Building a 
hybrid Society of Mind using components from ten different 
authors, in Proceedings of Seventh European Conference on 
Artificial Life. 
 
O’Leary, Ciarán (2003), SOML Specification, 
http://w2m.comp.dit.ie/services/documentation/ 
 
Poslad, S, Buckle, P and Hadingham, R (2000), The FIPA-
OS agent platform: Open Source for Open Standards, in 5th  
Int. Conf. on the Practical Application of Intelligent Agents 
and Multi-Agent Technology (PAAM-2000) 
 
Schmidt, D, Stal, M, Rohnert, H and Buschmann, F (2000), 
Pattern-Oriented Software Architecture: Patterns for 
Concurrent and Networked Objects, Wiley and Sons 
 
Tyrrell, Toby (1993), Computational Mechanisms for Action 
Selection, PhD Thesis, University of Edinburgh, Centre for 
Cognitive Science  
 
Wilson, S.W. (1990), The animat path to AI, Proc. 1st Int. 
Conf. on Simulation of Adaptive Behavior (SAB-90) 
 


