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ABSTRACT 
 

Computer games have belatedly come to the fore as a serious 
platform for AI research. Through our own experiments in 
the fields of imitation learning and intelligent agents, it 
became clear that the lack of a unified, powerful yet intuitive 
API was a serious impediment to the adoption of commercial 
games in both research and education. Parallel to our own 
specialised work, we therefore decided to develop a general-
purpose library for the creation of game agents, in the hope 
that the availability of such software would help stimulate 
further interest in the field. Though geared towards machine-
learning, the API would be flexible enough to facilitate 
multiple forms of artificial intelligence, making it suitable 
for application in research and in undergraduate courses 
centring upon traditional AI and agent-based systems. 
 
In this paper, we present the result of our efforts; the Quake 
2 Agent Simulation Environment (QASE) API. We first 
describe the theme of our work, the reasons for choosing 
Quake 2 as our testbed, and the necessity for an API of this 
nature. We then outline its most important features, before 
presenting an experiment from our own research to 
demonstrate QASE’s practical capabilities. 
 
INTRODUCTION 
 

In recent years, commercial computer games have gained 
increasing recognition as an ideal platform for research in 
various fields of artificial intelligence (Larid & van Lent, 
2000; Naraeyek 2004). The vast majority, however, still 
utilize AI techniques that were developed several decades 
ago, and which often produce mechanical, repetitive and 
unsatisfying game agents. Given that games provide a 
convenient means of recording the complex, fluent 
behaviors of human players, some researchers (Sklar et al 
1999; Bauckhage et al 2003; Thurau et al 2004) have 
speculated that approaches based on the analysis and 
imitation of human demonstrations may produce more 
challenging and believable artificial agents than can be 
realised using traditional techniques; indeed, imitation 
learning is already employed quite extensively in the 
robotics community (Atkeson & Schaal 1997, Schaal 1999, 
Jenkins & Mataric 2000). Building upon this premise, the 
primary focus of our work lies in investigating imitation 
learning in games which involve cognitive agents. 

In the initial stages of our research, however, it became clear 
that the available testbeds and resources were often 
scattered, frequently incomplete, and consistently ad hoc. 
Existing APIs were unintuitive, unreliable and lacking in 
functionality. Network protocol and file format 
specifications were generally unofficial, more often than not 
the result of reverse-engineering by adventurous fans 
(Girlich 2000). Documentation was sketchy, with even the 
most rudimentary information spread across several disjoint 
sources. Above all, it was evident that the absence of a 
unified, low-level yet easy-to-use development platform and 
experimental testbed was a major impediment to the 
adoption of commercial games in both academic research 
and education. 

As a result, we decided to adopt a two-track approach. We 
would develop approaches to imitation learning in games, 
while simultaneously building a comprehensive 
programming interface designed to provide all the 
functionality necessary for others to engage in this work. 
This interface should be powerful enough to facilitate high-
end research, while at the same time being suitable for use in 
undergraduate courses geared towards classic AI and agent-
based systems. 
 
Choosing a Testbed - Quake 2 
 

Our first task was to decide which game to use as a testbed. 
We opted to investigate the first-person shooter genre, in 
which players control a single character exploring a three-
dimensional environment littered with weapons, bonus 
items, traps and pitfalls, with the objective of defeating as 
many opponents as possible within a predetermined time 
limit. This particular genre was chosen in preference to 
others due to the fact that it provides a comparatively direct 
mapping of human decisions onto agent actions; this is in 
contrast to many other game types, where the agent’s 
behaviours are determined in large part by factors other than 
the player’s decision-making process. In sports simulations, 
for instance, only a single character is usually under the 
control of the human player - the interactions of his 
teammates are managed from one timestep to the next by the 
computer. While other genres do offer many interesting 
challenges for AI research, as outlined by both (Laird 2001) 
and (Fairclough et al 2001), the attraction of first-person 
shooters - to researchers and gamers alike - lies in the 
minimal degree of abstraction they impose between the 
human player and his/her virtual avatar. The same qualities 
make them ideal for use in undergraduate courses; the 
student creates the AI for a single agent, which can then be 
deployed in competition against those written by others. 



 

With this in mind, we chose ID Software’s Quake 2 as our 
test environment - it was prominent in the literature, existing 
resources were more substantial than for other games, and 
thanks to Laird it had become the de facto standard for 
research of this nature. Figure 1 shows a typical Quake 2 
environment, with various features labelled. 
 
THE QASE API 
 

The Quake 2 Agent Simulation Environment was created to 
meet the requirements identified earlier; namely, it is a fully-
featured, integrated API, designed to be as intuitive, modular 
and transparent as possible. It is Java-based, ensuring an 
easily extensible object-oriented architecture and allowing it 
to be deployed on many different hardware platforms and 
operating systems. It amalgamates and improves upon the 
functionalities of several existing applications, removing the 
need to rely on ad-hoc software combinations or to comb 
through a multitude of different documentations; QASE 
consolidates all relevant information into a single source. It 
is geared towards machine and imitation learning, but is 
equally appropriate for use with more traditional forms of 
agent-based AI. Put simply, QASE is intended to provide all 
the functionality the researcher or student will require in 
their experiments with cognitive agents. 

In the following sections we will outline the major 
components of the QASE architecture, highlighting its 
potential for application in research and education. 
 

Network Layer 
 

Quake 2’s multi-player mode is a simple client-server model. 
One player starts a server and other combatants connect to it, 
entering whatever environment (known as a map) the 
instigating player has selected. Every hundred milliseconds, 
the server transmits an update frame to all connected clients, 
containing information about the game world and the status 
of each entity; each client merges the update into its existing 
gamestate record, and then responds by sending its desired 
movement, aiming and action back to the server. Thus, in 
order to realize artificial agents (also known as bots), a 
means of handling the game’s network traffic is required. 

QASE accomplishes this via its Proxy class, which 
encapsulates an implementation of the Quake 2 client-side 
network protocol. It is responsible for establishing game 
sessions with the server, receiving inbound data and 
converting it into a human-readable format, and transmitting 
the agent’s subsequent actions back to the server, as shown 
in Figure 2 below. All this is transparent to the agent itself; 
at each interval, the bot is simply notified that an update has 
occurred, and receives a World object containing a hierarchy 

of component objects representing the current gamestate. 
 

An important point to note is that, because the network layer 
is separated from the higher-level classes in the QASE 
architecture, it is highly portable. Adapting the QASE API 
to games with similar network protocols, such as Quake 3 
and its derivatives, therefore becomes a relatively 
straightforward exercise; by extending the existing classes 
and rewriting the data-handling routines, they could 
conceivably be adapted to any UDP-based network game. 
Thus, QASE’s network structures can be seen as providing a 
template for the development of artificial game clients in 
general. 

Gamestate Augmentation 
 

Rather than simply providing a bare-bones implementation 
of the client-side protocol, QASE also performs several 
behind-the-scenes operations upon receipt of each update, 
designed to present an augmented view of the gamestate to 
the agent. In other words, QASE transparently analyses the 
information it receives, makes deductions based on what it 
finds, and exposes the results to the agent. As such, it may 
be seen as representing a virtual extension of the standard 
Quake 2 network protocol. 
 
For instance, the standard protocol has no explicit item 
pickup notification; when the agent collects an object, the 
server takes note of it but does not send a confirmation 
message to the client, since under normal circumstances the 
human player will be able to identify the item visually. 
QASE compensates for this by detecting the sound of an 
item pickup, examining which entities have just become 
inactive, finding the closest such entity to the player, and 
thereby deducing the entity number, type and inventory 
index of the newly-acquired item. Building on this, QASE 
records a full list of which items the player has collected and 
when they are due to respawn (reappear), automatically 
flagging the agent whenever such an event occurs. 
 
Similarly, recordings of Quake 2 matches (see below) do not 
encode the full inventory of the player at each timestep - that 
is, the list of how many of which items the player is 
currently carrying. For research models which require 
knowledge of the inventory, such as that outlined in the 

 
Figure 1 - Typical Quake 2 environment 

 

 
Figure 2 -  The QASE API and its role in realising Quake agents 



 

Bot 
interface 

BasicBot 
abstract 

ObserverBot 
abstract 

PollingBot 
abstract 

MatLabObserverBot 
abstract 

NoClipBot 
abstract 

MatLabPollingBot 
abstract 

MatLabGeneralObserverBot 
concrete final 

MatLabNoClipBot 
abstract 

MatLabGeneralPollingBot 
concrete final 

MatLabNoClipGeneralBot 
concrete final Figure 3 - The complete QASE Bot Hierarchy

QASE and Imitation Learning section below, this is a major 
drawback. QASE circumvents the problem by monitoring 
item pickups and weapon discharges, ‘manually’ building up 
an inventory representation from each frame to the next. 
This can also be used to track the agent’s inventory in online 
game sessions, removing the need to explicitly request a full 
inventory listing from the server on each update. 
 

Bot Hierarchy 
 
In order to facilitate the rapid creation of different types of 
game agents, QASE implements a structured hierarchy of 
bot classes, allowing users to develop agents from a number 
of levels of abstraction. These range from a simple interface 
class, to full-fledged bots incorporating an exhaustive range 
of user-accessible functions. The bot hierarchy comprises 
three major levels; these are summarised below. 
 
Bot 
A template which specifies the interface to which all bots 
must conform, but does not provide any functionality; the 
programmer is entirely responsible for the implementation of 
the agent, and may do so in any way (s)he chooses. 
 
BasicBot 
An abstract bot which provides most of the functionality 
required by Quake 2 agents, such as the ability to determine 
whether the bot has died, to respawn (re-enter the game) 
after the agent has been defeated, to create an agent given 
minimal profile information, to set the agent’s movement 
direction, speed and aim and send these to the server, to 
obtain sensory information about the virtual world, and to 
record itself to a demo file. All that is required of the 
programmer is to extend the class, write the AI routine in the 
predefined runAI method, and to supply a means of 
handling the server traffic according to whatever interaction 
paradigm he wishes to use. The third level of the bot 
hierarchy provides ready-to-use implementations of two 
such paradigms. 

ObserverBot and PollingBot 
The highest level of the Bot hierarchy consists of two 
classes, ObserverBot and PollingBot, which 
represent fully-realised agents. Each of these provides a 
means of detecting changes to the gamestate (implemented 
as indicated by their names), as well as a single point of 
insertion - the programmer needs only to supply the AI 
routine in the runAI method defined by the Bot interface. 
Each has its own advantages; the ObserverBot allows 
several different objects to be attached to a single Proxy, 
whereas the multithreaded PollingBot offers slightly 
more efficient performance. 

Beyond this, several convenience classes are available, 
which provide extended bot implementations tailored to 
specific purposes. The NoClipBots allow the user to 
‘noclip’ the agent (i.e. move it through otherwise solid 
walls) to any arbitrary point in the environment before 
starting the simulation; the MatLabBot branches will be 
explained later. The full hierarchy is shown in Figure 3 
below. 
 

The DM2 Parser and Recorder 
 

Quake 2’s inbuilt client, used by human players to connect 
to the game server, facilitates the recording of matches from 
the perspective of each individual player. These demo or 
DM2 files contain an edited copy of the network packet 
stream received by the client during the game session, 
capturing the player’s actions and the state of all entities at 
each discrete time step. For the purposes of imitation 
learning, then, a means of parsing these files and extracting 
the gameplay samples is needed. QASE’s DM2Parser fulfils 
this requirement. 
 

The DM2Parser treats the demo file as a virtual server, 
“connecting” to it and reading blocks of data in exactly the 
same manner as it receives network packets during an online 
game session. A copy of the gamestate is returned for each 
recorded frame, and the programmer may query it to retrieve 
whatever information (s)he requires.  



 

For examples of the type of data that can be obtained and 
analysed, see the sections MatLab Integration and QASE 
and Imitation Learning below. 
 
Furthermore, QASE incorporates a DM2Recorder, allowing 
the agent to automatically record a demo of itself during 
play; this actually improves upon Quake 2’s standard 
recording facilities, by allowing demos spanning multiple 
maps to be recorded in playable format. The incoming 
network stream is sampled, edited as necessary, and saved to 
file when the agent disconnects from the server or as an 
intermediate step whenever the map is changed. 
 
Environment Sensing 
 
The network packets received by game clients from the 
Quake 2 server do not encode any information about the 
actual environment in which the agent finds itself, beyond its 
current state and those of the various game entities present. 
This information is contained in Binary Space Partition 
(BSP) files stored locally on each client machine; thus, in 
order to provide the bot with more detailed sensory 
information (such as determining its proximity to an 
obstacle, or whether an enemy is visible), a means of 
locating, parsing and querying these map files is required. 
QASE’s BSPParser and PAKParser fulfil this need. 
 
The BSP file corresponding to the active map in the current 
game session may be stored in the default game directory, a 
custom game directory, or in any of Quake 2’s PAK 
archives; its filename may or may not match the name of the 
map, which is the only information possessed by the client. 
If the user sets an environment variable pointing to the 
location of the base Quake 2 folder, QASE can automatically 
find the relevant BSP by searching each location in order of 
likelihood. This is done transparently from the agent’s 
perspective; as soon as any environment-sensing method is 
invoked, the map is silently located, loaded and queried. 
Once loaded, the BSPParser can be used to sweep a line, 
box or sphere in any arbitrary direction through the game 
world, starting from the agent’s current location; the distance 
and/or position at which the first collision with the 
environment’s geometry occurs is returned. This allows the 
agent to “perceive” the world around it on a pseudo-visual 
level - line traces can be used to determine whether entities 
are visible from the agent’s perspective, sphere traces can be 
used to check whether projectiles will reach a certain point if 
fired, and box traces can be used to determine whether the 

agent’s in-game model will fit through an opening. Figure 4 
above shows the operation of each different trace type. 
 
Inbuilt Cognitive & Other Facilities 
 
For education purposes, QASE incorporates 
implementations of both a neural network and a genetic 
algorithm generator. These are designed to be used in 
tandem - that is, the genetic algorithms gradually cause the 
neural network’s weights to evolve towards a given fitness 
function. A KMeans calculator class is also included; aside 
from serving as an illustration of clustering techniques, it is 
also used in QASE’s waypoint map generator (see below). 
These features are included primarily to allow students to 
experiment with some AI constructs commonly found in 
undergraduate curricula - for more demanding research 
applications, QASE allows MatLab to be used as a back-end. 
 
One of QASE’s most useful features, particularly from an 
educational point of view, is the aforementioned waypoint 
map generator. Drawing on concepts developed in the 
course of our work in imitation learning (see QASE and 
Imitation Learning), this requires the user to supply a 
prerecorded DM2 file; it will then automatically find the set 
of all positions occupied by the player during the game 
session, cluster them to produce a smaller number of 
indicative waypoints, and draw edges between these 
waypoints based on the observed movement of the 
demonstrator. The items collected by the player are also 
recorded, and Floyd’s algorithm (Floyd, 1962) is applied to 
find the matrix of distances between each pair of points. The 
map returned to the user at the end of the process can thus be 
queried to find the shortest path from the agent’s current 
position to any needed item, to the nearest opponent, or to 
any random point in the level. Rather than manually building 
a waypoint map from scratch, then, all the student needs to 
do in order to create a full navigation system for their agent 
is to record themselves moving around the environment as 
necessary, collect whatever items their bot will require, and 
present the resulting demo file to QASE. 
 
MatLab Integration 
 
For the purposes of our work in imitation learning, we need 
a way to not only obtain, but also statistically analyse the 
observed in-game actions of human players. Rather than 
hand-coding the required structures from scratch, we opted 
instead to integrate the API with the Mathworks™ MatLab® 

 

 
Figure 4 - BSP traces with line, sphere and box. Collision occurs at different points. 



 

programming environment. Given that it provides a rich set 
of built-in toolboxes for neural computation, clustering and 
other classification techniques and is already widely used in 
research, MatLab seemed an ideal choice to act as an 
optional back-end for QASE agents. 
 
Bots can be instantiated and controlled via MatLab in one of 
two ways. For simple AI routines, one of the standalone 
MatLabGeneralBots shown in Figure 3 is sufficient. A 
MatLab function is written which creates an instance of the 
agent, connects it to the server, and accesses the gamestate at 
each update, all entirely within the MatLab environment. 
The advantage of this approach is that it is intuitive and very 
straightforward; a template of the MatLab script is provided 
with the QASE API. In cases where a large amount of 
gamestate and data processing must be carried out on each 
frame, however, handling it exclusively through MatLab can 
prove somewhat inefficient. 
 
For this reason, we developed an alternative paradigm 
designed to offer greater efficiency. As outlined in the Bot 
Hierarchy section above, QASE agents are usually created 
by extending either the ObserverBot or PollingBot 
classes, and overloading the runAI method in order to add 
the required behaviour. In other words, the agent’s AI 
routines are atomic, and encapsulated entirely within the 
derived class. Thus, in order to facilitate MatLab, a new 
branch of agents - the MatLabBots - was created; each of 
these possesses a three-step AI routine as follows: 
 

1. On each server update, QASE first pre-processes 
the data required for the task at hand; it then flags 
MatLab to take over control of the AI cycle. 

2. The MatLab function obtains the agent’s input data, 
processes it using its own internal structures, passes 
the results back to the agent, and signals that the 
agent should reassume control. 

3. This done, the bot applies MatLab’s output in a 
postprocessing step. 

 
This framework is already built into QASE’s 
MatLabBots; the programmer need only extend 
MatLabObserver / Polling / NoClipBot to define 
the handling of data in the preprocessing and postprocessing 
steps, and change the accompanying MatLab script as 
necessary. By separating the agent’s body (QASE) from its 
brain (MatLab) in this manner, we ensure that both are 
modular and reusable, and that cross-environment 
communications are minimised. The preprocessing step 

filters the gamestate, presenting only the minimal required 
information to MatLab; QASE thus enables both MatLab 
and Java to process as much data as possible in their 
respective native environments. This has proven extremely 
effective, both in terms of computational efficiency and ease 
of development. 
 
Aside from creating game agents, MatLab can also use the 
various supporting functions of the QASE API. From our 
perspective, one of the most important of these is the ability 
to read and process demonstrations of gameplay using the 
DM2Parser. Figure 8 shows an example of this; see the 
section QASE and Imitation Learning for details. 
 
Of course, the fact that we integrated QASE with MatLab 
specifically to facilitate our work in imitation learning does 
not diminish its potential for use in other areas; as stated 
earlier, QASE is designed for broad AI research. 
 
QASE AND IMITATION LEARNING 
 
In this section, we outline an experiment conducted in the 
course of our work. While it by no means demonstrates the 
full extent of QASE’s faculties, this example does provide a 
good indication of its potential in the field of research. 
 
One of the first questions which arises when considering the 
problem of imitation learning is, quite simply, “what 
behaviours does the demonstration encode?” To this end, 
(Thurau et al 2004a) propose a model of in-game behaviour 
based closely on Hollnagel’s COCOM (Hollnagel 1993), as 
shown in Figure 6 below. 
 

 

 
Figure 5 - MatLab/QASE integration. MatLab acts as a back-end in the AI cycle; the agent’s body and brain are separated 

 

 
Figure 6 - Thurau’s adaptation of Hollnagel's COCOM 



 

Strategic behaviours refer to actions the player takes with 
long-term goals in mind; these include maximising the 
number of weapons or items he possesses, controlling 
certain areas of the map, and so forth. Tactical behaviours 
are mostly concerned with localised tasks such as evading or 
engaging opponents. Reactive behaviours involve little or no 
planning; the player simply reacts to stimuli in his immediate 
surroundings. Motion modelling refers to the imitation of the 
player’s movement; in theory, this should produce 
humanlike motion along the bot’s path, and should also 
prevent the agent from performing actions which are 
impossible for the human player’s mouse-and-keyboard 
interface (instantaneous 180˚ turning, perfect aim, etc). 
 
Goal-Oriented Strategic Behaviour 
 
The following is drawn largely from our paper “Towards 
Integrated Imitation of Strategic Planning and Motion 
Modelling in Interactive Computer Games” (Gorman & 
Humphrys 2005). 
 
In order to learn long-term strategic behaviours from human 
demonstration, we developed a model designed to emulate 
the notion of program level imitation discussed in (Byrne 
and Russon 1998); in other words, to identify the 
demonstrator’s intent, rather than simply reproducing his 
precise actions. (Thurau et al, 2004a) present an approach to 
such behaviours based on artificial potential fields; here we 
consider the application of reinforcement learning and fuzzy 
clustering techniques. 
 

Topology Learning 
 

As mentioned earlier, in the context of Quake, strategic 
planning is mostly concerned with the efficient collection 
and monopolisation of items and the control of certain 
important areas of the map. With this in mind, we first read 
the set of all player locations },,{ zyxl =

r
 from the DM2 

recording into MatLab via QASE’s DM2Parser, and the 
points are clustered to produce a reduced set of positions, 
called nodes. We initially employed the Neural Gas 
algorithm in this step, since it has been demonstrated to 
perform well in topology-learning tasks (Martinez et al 
1993); however, we later developed a custom modification 
of Elkan’s fast k-means (Elkan 2003) designed to treat the 
positions at which items were collected as immovable 
“anchor” centroids, thereby deriving a goal-oriented 
clustering of the dataset. By examining the sequence of 
player positions, we also construct an n x n matrix of edges 
E, where n is the number of clusters, and Eij = 1 if the player 
was observed to move from node i to node j and 0 otherwise. 
 

Deriving Movement Paths 
 

Because the environment described above may be seen as a 
Markov Decision Process, with the nodes corresponding to 
states and the edges to transitions, we chose to investigate 
approaches to goal-oriented movement based on concepts 
from reinforcement learning, in particular the value iteration 
algorithm. 

To do so, we first read the player’s inventory from the demo 
at each timestep, again using QASE’s DM2Parser and the 
inventory-tracking system described earlier. In our 
experiments, we construct an inventory state vector of 18 
elements, specifying the player’s health and armour values 
together with the weapons he has collected and the amount 
of ammo he has for each. The set of unique state vectors is 
then obtained; these state prototypes represent the varying 
situations faced by the player during the game session. 
 
We can now construct a set of paths which the player 
followed while in each inventory state. These paths consist 
of a series of transitions between clusters: 
 

],...,,[ ,2,1, kiiii ccct =  
 

where ti is a transition sequence (path), and ci,j is a single 
node along that sequence. Each path begins at the point 
where the player enters a given state, and ends where he 
exits that state - in other words, when an item is collected 
that causes the player’s inventory to shift towards a different 
prototype. See Figure 8 for an illustration of one such path. 
 

Assigning Rewards 
 

Having obtained the different paths pursued by the player in 
each inventory state, we turn to reinforcement learning to 
reproduce his behaviour. In this scenario, the MDP’s actions 
are considered to be the choice to move to a given node from 
the current position. Thus, the transition probabilities are 
 

ijEjaisjsP ==== ),|'(
 

 

To guide the agent along the same routes taken by the 
player, we assign an increasing reward to consecutive nodes 
in each path taken in each prototype, such that 
 

jcpR jii =),( ,  
 

 
Figure 7 - An illustration of program-level imitation; items are 
represented as green squares. The player (blue) descends and 
re-ascends a staircase, with no objective benefit. The agent 
(red) ignores this non-goal-oriented movement, passing the 
stairs and heading directly towards the final item pickup. 



 

where pi is a prototype, and ci,j is the jth cluster in the 
associated movement sequence. Each successive node along 
the path’s length receives a reward greater than the last, until 
the final cluster (at which an inventory state change 
occurred) is assigned the highest reward. If a path loops 
back or crosses over itself en route to the goal, then the 
higher values will overwrite the previous rewards, ensuring 
that the agent will be guided towards the terminal node while 
ignoring any non-goal-oriented diversions. Thus, as 
mentioned above, the agent will emulate the player’s 
program-level behaviour, instead of simply duplicating his 
exact actions. See Figure 7 above for an example. 
 
Learning Utility Values 
 
With the transition probabilities and rewards in place, we 
can now run the value iteration algorithm in order to 
compute the utility values for each node in the topological 
map under each inventory state prototype. The value 
iteration algorithm iteratively propagates rewards outwards 
from terminal nodes to all others, discounting them by 
distance from the reward signal; once complete, these utility 
values will represent the “usefulness” of being at that node 
while moving to the goal.  
 

In our case, it is important that every node in the map should 
possess a utility value under every state prototype by the end 
of the learning process, thereby ensuring that the agent will 
always receive strong guidance towards its goal. We adopt 
the game value iteration approach outlined in (Hartley et al 
2004) - the algorithm is applied until all nodes have been 
affected by a reward at least once. Figure 9 above shows the 
results of the value iteration algorithm on a typical path. 
 
Multiple Weighted Objectives 
 
Faced with a situation where several different items are of 
strategic benefit, a human player will intuitively weigh their 
respective importance before deciding on his next move. To 
model this, we adopt a fuzzy clustering approach. On each 
update, the agent’s current inventory is expressed as a 
membership distribution across all prototype inventory 
states. This is computed as: 
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where s is the current inventory state, p is a prototype 
inventory state, P is the number of prototypes, d -1 is an 
inverse-distance or proximity function, and mp(s) is the 
degree to which state vector s is a member of prototype p, 
relative to all other prototypes. The utility configurations 
associated with each prototype are then weighted according 
to the membership distribution, and the adjusted 
configurations superimposed; we also apply an online 
discount to prevent the possibility of backtracking. The 
formula used to compute the final utilities is thus: 
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where U(c) is the final utility of node c, γ is the online 
discount, e(c) is the number of times the player has entered 
cluster c since the last state transition, Vp(c) is the original 
value of node c in state prototype p, and E is the edge 
matrix. 
 

Object Transience 
 

Another important element of planning behaviour is the 
human’s understanding of object transience. A human 
player intuitively tracks which items he has collected from 
which areas of the map, can easily estimate when they are 
scheduled to reappear, and adjusts his strategy accordingly. 
In order to capture this, we introduce an activation variable 
in the computation of the membership values; inactive items 
are nullified, and the membership values are redistributed 
among those items which are still active. 
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where a, the activation of an item, is 1 if the object o at the 
terminal node of the path associated with prototype state p is 
present, and 0 otherwise. 

 
Figure 8 - An example of a path followed by the player while in a 
particular inventory state. The path originates in the lower part of 
the level, and ends at the point where the player picked up an item 
that caused his inventory to shift towards another prototype. 

 
Figure 9 - The ascending rewards assigned to this path (blue/red), 
and the results of the value iteration algorithm (green & 
magenta). The y-axis deontes the values associated with each 
waypoint in the topological map. 



 

 

Deploying the Agent 
 

With the DM2 data extracted and the required values 
computed, we can now deploy the agent. We extend any of 
the MatLabBots, overloading preMatLab to extract the 
player’s current position and inventory and pass these to 
MatLab. We then rewrite the MatLab template to instantiate 
the agent and connect it to the server. On each update, 
MatLab determines the closest matching state prototype and 
node, extracts the relevant utility configuration, finds the set 
of nodes connected to the current node by examining the 
edge matrix, and selects the successor with the highest utility 
value; the position of this node is passed back to QASE. The 
agent’s postMatLab method is also overloaded, to 
determine the direction between its current position and the 
next node, and to set the agent’s movement accordingly. As 
the agent traverses its environment, item pickups and in-
game events will cause its inventory to change, resulting in a 
corresponding change in the utility values and attracting the 
agent towards its next objective. Figure 10 shows the QASE 
agent in action. 
 

CONCLUSION 
 

In this paper, we identified the lack of a fully-featured, 
consolidated API as a major impediment to the adoption of 
commercial games in AI education and research. We then 
presented our QASE API, which has been developed to meet 
these requirements. Several of its more important features 
were described, and their usefulness highlighted. A practical 
demonstration of QASE as it has been used in our own 
research closed this contribution. 
 

FUTURE WORK 
 

Although we regard it as being very feature-rich and entirely 
stable at this point, QASE will continue to develop as we 
progress in our research. The two tracks of our work - that of 
investigating approaches to imitation learning and of 
building an accompanying API - have thus far informed each 
other; as mentioned earlier, QASE’s waypoint generator is 
derived from the approach outlined in the section QASE and 

Imitation Learning. In this way, further developments in our 
research will guide future development of the API. 
 

QASE has already attracted some attention in academia; 
researchers at Kyushu University in Japan expressed interest 
in adopting it for use in their work, and more recently a PhD 
student in California has contacted us with the same intent. 
As more individuals and institutions discover QASE, the 
resulting feedback will aid us in continually improving the 
API. We hope that this paper will help to stimulate further 
interest in QASE, in imitation learning, and in the potential 
of games in AI research and education in general. 
 

To download the API and accompanying documentation, 
please visit the QASE homepage: http://qase.vze.com 
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Figure 10 - The agent returns to a previously-visited point before some ammo items have respawned (1.1), and since they are inactive it 
initially passes by (1.2); however, their sudden re-emergence (1.2) causes the utilities to reactivate, and the agent is drawn to collect 
them (1.3) before continuing (1.4). Later, the agent returns once again (2.1). The items are now active, but since the agent has already 
collected several shotgun pickups, the relevant membership values are insignificant; as a result, the agent ignores the pickups (2.2, 
2.3), and continues on towards more attractive objectives (2.4) 
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