

QASE: AN INTEGRATED API FOR IMITATION AND GENERAL AI RESEARCH
IN COMMERCIAL COMPUTER GAMES

Bernard Gorman
Dublin City University
Glasnevin, Dublin 9

Rep. of Ireland
+353 1 4902714

bernard.gorman@computing.dcu.ie

Martin Fredriksson
Blekinge Institute of Technology

Ronneby
Sweden

+46 457 385825
martin.fredriksson@bth.se

Mark Humphrys
Dublin City University
Glasnevin, Dublin 9

Rep. of Ireland
+353 1 700 8059

mark.humphrys@computing.dcu.ie

KEYWORDS
Imitation, machine learning, artificial intelligence, API,
game bots, intelligent agents, education.

ABSTRACT

Computer games have belatedly come to the fore as a serious
platform for AI research. Through our own experiments in
the fields of imitation learning and intelligent agents, it
became clear that the lack of a unified, powerful yet intuitive
API was a serious impediment to the adoption of commercial
games in both research and education. Parallel to our own
specialised work, we therefore decided to develop a general-
purpose library for the creation of game agents, in the hope
that the availability of such software would help stimulate
further interest in the field. Though geared towards machine-
learning, the API would be flexible enough to facilitate
multiple forms of artificial intelligence, making it suitable
for application in research and in undergraduate courses
centring upon traditional AI and agent-based systems.

In this paper, we present the result of our efforts; the Quake
2 Agent Simulation Environment (QASE) API. We first
describe the theme of our work, the reasons for choosing
Quake 2 as our testbed, and the necessity for an API of this
nature. We then outline its most important features, before
presenting an experiment from our own research to
demonstrate QASE’s practical capabilities.

INTRODUCTION

In recent years, commercial computer games have gained
increasing recognition as an ideal platform for research in
various fields of artificial intelligence (Larid & van Lent,
2000; Naraeyek 2004). The vast majority, however, still
utilize AI techniques that were developed several decades
ago, and which often produce mechanical, repetitive and
unsatisfying game agents. Given that games provide a
convenient means of recording the complex, fluent
behaviors of human players, some researchers (Sklar et al
1999; Bauckhage et al 2003; Thurau et al 2004) have
speculated that approaches based on the analysis and
imitation of human demonstrations may produce more
challenging and believable artificial agents than can be
realised using traditional techniques; indeed, imitation
learning is already employed quite extensively in the
robotics community (Atkeson & Schaal 1997, Schaal 1999,
Jenkins & Mataric 2000). Building upon this premise, the
primary focus of our work lies in investigating imitation
learning in games which involve cognitive agents.

In the initial stages of our research, however, it became clear
that the available testbeds and resources were often
scattered, frequently incomplete, and consistently ad hoc.
Existing APIs were unintuitive, unreliable and lacking in
functionality. Network protocol and file format
specifications were generally unofficial, more often than not
the result of reverse-engineering by adventurous fans
(Girlich 2000). Documentation was sketchy, with even the
most rudimentary information spread across several disjoint
sources. Above all, it was evident that the absence of a
unified, low-level yet easy-to-use development platform and
experimental testbed was a major impediment to the
adoption of commercial games in both academic research
and education.

As a result, we decided to adopt a two-track approach. We
would develop approaches to imitation learning in games,
while simultaneously building a comprehensive
programming interface designed to provide all the
functionality necessary for others to engage in this work.
This interface should be powerful enough to facilitate high-
end research, while at the same time being suitable for use in
undergraduate courses geared towards classic AI and agent-
based systems.

Choosing a Testbed - Quake 2

Our first task was to decide which game to use as a testbed.
We opted to investigate the first-person shooter genre, in
which players control a single character exploring a three-
dimensional environment littered with weapons, bonus
items, traps and pitfalls, with the objective of defeating as
many opponents as possible within a predetermined time
limit. This particular genre was chosen in preference to
others due to the fact that it provides a comparatively direct
mapping of human decisions onto agent actions; this is in
contrast to many other game types, where the agent’s
behaviours are determined in large part by factors other than
the player’s decision-making process. In sports simulations,
for instance, only a single character is usually under the
control of the human player - the interactions of his
teammates are managed from one timestep to the next by the
computer. While other genres do offer many interesting
challenges for AI research, as outlined by both (Laird 2001)
and (Fairclough et al 2001), the attraction of first-person
shooters - to researchers and gamers alike - lies in the
minimal degree of abstraction they impose between the
human player and his/her virtual avatar. The same qualities
make them ideal for use in undergraduate courses; the
student creates the AI for a single agent, which can then be
deployed in competition against those written by others.

With this in mind, we chose ID Software’s Quake 2 as our
test environment - it was prominent in the literature, existing
resources were more substantial than for other games, and
thanks to Laird it had become the de facto standard for
research of this nature. Figure 1 shows a typical Quake 2
environment, with various features labelled.

THE QASE API

The Quake 2 Agent Simulation Environment was created to
meet the requirements identified earlier; namely, it is a fully-
featured, integrated API, designed to be as intuitive, modular
and transparent as possible. It is Java-based, ensuring an
easily extensible object-oriented architecture and allowing it
to be deployed on many different hardware platforms and
operating systems. It amalgamates and improves upon the
functionalities of several existing applications, removing the
need to rely on ad-hoc software combinations or to comb
through a multitude of different documentations; QASE
consolidates all relevant information into a single source. It
is geared towards machine and imitation learning, but is
equally appropriate for use with more traditional forms of
agent-based AI. Put simply, QASE is intended to provide all
the functionality the researcher or student will require in
their experiments with cognitive agents.

In the following sections we will outline the major
components of the QASE architecture, highlighting its
potential for application in research and education.

Network Layer

Quake 2’s multi-player mode is a simple client-server model.
One player starts a server and other combatants connect to it,
entering whatever environment (known as a map) the
instigating player has selected. Every hundred milliseconds,
the server transmits an update frame to all connected clients,
containing information about the game world and the status
of each entity; each client merges the update into its existing
gamestate record, and then responds by sending its desired
movement, aiming and action back to the server. Thus, in
order to realize artificial agents (also known as bots), a
means of handling the game’s network traffic is required.

QASE accomplishes this via its Proxy class, which
encapsulates an implementation of the Quake 2 client-side
network protocol. It is responsible for establishing game
sessions with the server, receiving inbound data and
converting it into a human-readable format, and transmitting
the agent’s subsequent actions back to the server, as shown
in Figure 2 below. All this is transparent to the agent itself;
at each interval, the bot is simply notified that an update has
occurred, and receives a World object containing a hierarchy

of component objects representing the current gamestate.

An important point to note is that, because the network layer
is separated from the higher-level classes in the QASE
architecture, it is highly portable. Adapting the QASE API
to games with similar network protocols, such as Quake 3
and its derivatives, therefore becomes a relatively
straightforward exercise; by extending the existing classes
and rewriting the data-handling routines, they could
conceivably be adapted to any UDP-based network game.
Thus, QASE’s network structures can be seen as providing a
template for the development of artificial game clients in
general.

Gamestate Augmentation

Rather than simply providing a bare-bones implementation
of the client-side protocol, QASE also performs several
behind-the-scenes operations upon receipt of each update,
designed to present an augmented view of the gamestate to
the agent. In other words, QASE transparently analyses the
information it receives, makes deductions based on what it
finds, and exposes the results to the agent. As such, it may
be seen as representing a virtual extension of the standard
Quake 2 network protocol.

For instance, the standard protocol has no explicit item
pickup notification; when the agent collects an object, the
server takes note of it but does not send a confirmation
message to the client, since under normal circumstances the
human player will be able to identify the item visually.
QASE compensates for this by detecting the sound of an
item pickup, examining which entities have just become
inactive, finding the closest such entity to the player, and
thereby deducing the entity number, type and inventory
index of the newly-acquired item. Building on this, QASE
records a full list of which items the player has collected and
when they are due to respawn (reappear), automatically
flagging the agent whenever such an event occurs.

Similarly, recordings of Quake 2 matches (see below) do not
encode the full inventory of the player at each timestep - that
is, the list of how many of which items the player is
currently carrying. For research models which require
knowledge of the inventory, such as that outlined in the

Figure 1 - Typical Quake 2 environment

Figure 2 - The QASE API and its role in realising Quake agents

Bot
interface

BasicBot
abstract

ObserverBot
abstract

PollingBot
abstract

MatLabObserverBot
abstract

NoClipBot
abstract

MatLabPollingBot
abstract

MatLabGeneralObserverBot
concrete final

MatLabNoClipBot
abstract

MatLabGeneralPollingBot
concrete final

MatLabNoClipGeneralBot
concrete final Figure 3 - The complete QASE Bot Hierarchy

QASE and Imitation Learning section below, this is a major
drawback. QASE circumvents the problem by monitoring
item pickups and weapon discharges, ‘manually’ building up
an inventory representation from each frame to the next.
This can also be used to track the agent’s inventory in online
game sessions, removing the need to explicitly request a full
inventory listing from the server on each update.

Bot Hierarchy

In order to facilitate the rapid creation of different types of
game agents, QASE implements a structured hierarchy of
bot classes, allowing users to develop agents from a number
of levels of abstraction. These range from a simple interface
class, to full-fledged bots incorporating an exhaustive range
of user-accessible functions. The bot hierarchy comprises
three major levels; these are summarised below.

Bot
A template which specifies the interface to which all bots
must conform, but does not provide any functionality; the
programmer is entirely responsible for the implementation of
the agent, and may do so in any way (s)he chooses.

BasicBot
An abstract bot which provides most of the functionality
required by Quake 2 agents, such as the ability to determine
whether the bot has died, to respawn (re-enter the game)
after the agent has been defeated, to create an agent given
minimal profile information, to set the agent’s movement
direction, speed and aim and send these to the server, to
obtain sensory information about the virtual world, and to
record itself to a demo file. All that is required of the
programmer is to extend the class, write the AI routine in the
predefined runAI method, and to supply a means of
handling the server traffic according to whatever interaction
paradigm he wishes to use. The third level of the bot
hierarchy provides ready-to-use implementations of two
such paradigms.

ObserverBot and PollingBot
The highest level of the Bot hierarchy consists of two
classes, ObserverBot and PollingBot, which
represent fully-realised agents. Each of these provides a
means of detecting changes to the gamestate (implemented
as indicated by their names), as well as a single point of
insertion - the programmer needs only to supply the AI
routine in the runAI method defined by the Bot interface.
Each has its own advantages; the ObserverBot allows
several different objects to be attached to a single Proxy,
whereas the multithreaded PollingBot offers slightly
more efficient performance.

Beyond this, several convenience classes are available,
which provide extended bot implementations tailored to
specific purposes. The NoClipBots allow the user to
‘noclip’ the agent (i.e. move it through otherwise solid
walls) to any arbitrary point in the environment before
starting the simulation; the MatLabBot branches will be
explained later. The full hierarchy is shown in Figure 3
below.

The DM2 Parser and Recorder

Quake 2’s inbuilt client, used by human players to connect
to the game server, facilitates the recording of matches from
the perspective of each individual player. These demo or
DM2 files contain an edited copy of the network packet
stream received by the client during the game session,
capturing the player’s actions and the state of all entities at
each discrete time step. For the purposes of imitation
learning, then, a means of parsing these files and extracting
the gameplay samples is needed. QASE’s DM2Parser fulfils
this requirement.

The DM2Parser treats the demo file as a virtual server,
“connecting” to it and reading blocks of data in exactly the
same manner as it receives network packets during an online
game session. A copy of the gamestate is returned for each
recorded frame, and the programmer may query it to retrieve
whatever information (s)he requires.

For examples of the type of data that can be obtained and
analysed, see the sections MatLab Integration and QASE
and Imitation Learning below.

Furthermore, QASE incorporates a DM2Recorder, allowing
the agent to automatically record a demo of itself during
play; this actually improves upon Quake 2’s standard
recording facilities, by allowing demos spanning multiple
maps to be recorded in playable format. The incoming
network stream is sampled, edited as necessary, and saved to
file when the agent disconnects from the server or as an
intermediate step whenever the map is changed.

Environment Sensing

The network packets received by game clients from the
Quake 2 server do not encode any information about the
actual environment in which the agent finds itself, beyond its
current state and those of the various game entities present.
This information is contained in Binary Space Partition
(BSP) files stored locally on each client machine; thus, in
order to provide the bot with more detailed sensory
information (such as determining its proximity to an
obstacle, or whether an enemy is visible), a means of
locating, parsing and querying these map files is required.
QASE’s BSPParser and PAKParser fulfil this need.

The BSP file corresponding to the active map in the current
game session may be stored in the default game directory, a
custom game directory, or in any of Quake 2’s PAK
archives; its filename may or may not match the name of the
map, which is the only information possessed by the client.
If the user sets an environment variable pointing to the
location of the base Quake 2 folder, QASE can automatically
find the relevant BSP by searching each location in order of
likelihood. This is done transparently from the agent’s
perspective; as soon as any environment-sensing method is
invoked, the map is silently located, loaded and queried.
Once loaded, the BSPParser can be used to sweep a line,
box or sphere in any arbitrary direction through the game
world, starting from the agent’s current location; the distance
and/or position at which the first collision with the
environment’s geometry occurs is returned. This allows the
agent to “perceive” the world around it on a pseudo-visual
level - line traces can be used to determine whether entities
are visible from the agent’s perspective, sphere traces can be
used to check whether projectiles will reach a certain point if
fired, and box traces can be used to determine whether the

agent’s in-game model will fit through an opening. Figure 4
above shows the operation of each different trace type.

Inbuilt Cognitive & Other Facilities

For education purposes, QASE incorporates
implementations of both a neural network and a genetic
algorithm generator. These are designed to be used in
tandem - that is, the genetic algorithms gradually cause the
neural network’s weights to evolve towards a given fitness
function. A KMeans calculator class is also included; aside
from serving as an illustration of clustering techniques, it is
also used in QASE’s waypoint map generator (see below).
These features are included primarily to allow students to
experiment with some AI constructs commonly found in
undergraduate curricula - for more demanding research
applications, QASE allows MatLab to be used as a back-end.

One of QASE’s most useful features, particularly from an
educational point of view, is the aforementioned waypoint
map generator. Drawing on concepts developed in the
course of our work in imitation learning (see QASE and
Imitation Learning), this requires the user to supply a
prerecorded DM2 file; it will then automatically find the set
of all positions occupied by the player during the game
session, cluster them to produce a smaller number of
indicative waypoints, and draw edges between these
waypoints based on the observed movement of the
demonstrator. The items collected by the player are also
recorded, and Floyd’s algorithm (Floyd, 1962) is applied to
find the matrix of distances between each pair of points. The
map returned to the user at the end of the process can thus be
queried to find the shortest path from the agent’s current
position to any needed item, to the nearest opponent, or to
any random point in the level. Rather than manually building
a waypoint map from scratch, then, all the student needs to
do in order to create a full navigation system for their agent
is to record themselves moving around the environment as
necessary, collect whatever items their bot will require, and
present the resulting demo file to QASE.

MatLab Integration

For the purposes of our work in imitation learning, we need
a way to not only obtain, but also statistically analyse the
observed in-game actions of human players. Rather than
hand-coding the required structures from scratch, we opted
instead to integrate the API with the Mathworks™ MatLab®

Figure 4 - BSP traces with line, sphere and box. Collision occurs at different points.

programming environment. Given that it provides a rich set
of built-in toolboxes for neural computation, clustering and
other classification techniques and is already widely used in
research, MatLab seemed an ideal choice to act as an
optional back-end for QASE agents.

Bots can be instantiated and controlled via MatLab in one of
two ways. For simple AI routines, one of the standalone
MatLabGeneralBots shown in Figure 3 is sufficient. A
MatLab function is written which creates an instance of the
agent, connects it to the server, and accesses the gamestate at
each update, all entirely within the MatLab environment.
The advantage of this approach is that it is intuitive and very
straightforward; a template of the MatLab script is provided
with the QASE API. In cases where a large amount of
gamestate and data processing must be carried out on each
frame, however, handling it exclusively through MatLab can
prove somewhat inefficient.

For this reason, we developed an alternative paradigm
designed to offer greater efficiency. As outlined in the Bot
Hierarchy section above, QASE agents are usually created
by extending either the ObserverBot or PollingBot
classes, and overloading the runAI method in order to add
the required behaviour. In other words, the agent’s AI
routines are atomic, and encapsulated entirely within the
derived class. Thus, in order to facilitate MatLab, a new
branch of agents - the MatLabBots - was created; each of
these possesses a three-step AI routine as follows:

1. On each server update, QASE first pre-processes
the data required for the task at hand; it then flags
MatLab to take over control of the AI cycle.

2. The MatLab function obtains the agent’s input data,
processes it using its own internal structures, passes
the results back to the agent, and signals that the
agent should reassume control.

3. This done, the bot applies MatLab’s output in a
postprocessing step.

This framework is already built into QASE’s
MatLabBots; the programmer need only extend
MatLabObserver / Polling / NoClipBot to define
the handling of data in the preprocessing and postprocessing
steps, and change the accompanying MatLab script as
necessary. By separating the agent’s body (QASE) from its
brain (MatLab) in this manner, we ensure that both are
modular and reusable, and that cross-environment
communications are minimised. The preprocessing step

filters the gamestate, presenting only the minimal required
information to MatLab; QASE thus enables both MatLab
and Java to process as much data as possible in their
respective native environments. This has proven extremely
effective, both in terms of computational efficiency and ease
of development.

Aside from creating game agents, MatLab can also use the
various supporting functions of the QASE API. From our
perspective, one of the most important of these is the ability
to read and process demonstrations of gameplay using the
DM2Parser. Figure 8 shows an example of this; see the
section QASE and Imitation Learning for details.

Of course, the fact that we integrated QASE with MatLab
specifically to facilitate our work in imitation learning does
not diminish its potential for use in other areas; as stated
earlier, QASE is designed for broad AI research.

QASE AND IMITATION LEARNING

In this section, we outline an experiment conducted in the
course of our work. While it by no means demonstrates the
full extent of QASE’s faculties, this example does provide a
good indication of its potential in the field of research.

One of the first questions which arises when considering the
problem of imitation learning is, quite simply, “what
behaviours does the demonstration encode?” To this end,
(Thurau et al 2004a) propose a model of in-game behaviour
based closely on Hollnagel’s COCOM (Hollnagel 1993), as
shown in Figure 6 below.

Figure 5 - MatLab/QASE integration. MatLab acts as a back-end in the AI cycle; the agent’s body and brain are separated

Figure 6 - Thurau’s adaptation of Hollnagel's COCOM

Strategic behaviours refer to actions the player takes with
long-term goals in mind; these include maximising the
number of weapons or items he possesses, controlling
certain areas of the map, and so forth. Tactical behaviours
are mostly concerned with localised tasks such as evading or
engaging opponents. Reactive behaviours involve little or no
planning; the player simply reacts to stimuli in his immediate
surroundings. Motion modelling refers to the imitation of the
player’s movement; in theory, this should produce
humanlike motion along the bot’s path, and should also
prevent the agent from performing actions which are
impossible for the human player’s mouse-and-keyboard
interface (instantaneous 180˚ turning, perfect aim, etc).

Goal-Oriented Strategic Behaviour

The following is drawn largely from our paper “Towards
Integrated Imitation of Strategic Planning and Motion
Modelling in Interactive Computer Games” (Gorman &
Humphrys 2005).

In order to learn long-term strategic behaviours from human
demonstration, we developed a model designed to emulate
the notion of program level imitation discussed in (Byrne
and Russon 1998); in other words, to identify the
demonstrator’s intent, rather than simply reproducing his
precise actions. (Thurau et al, 2004a) present an approach to
such behaviours based on artificial potential fields; here we
consider the application of reinforcement learning and fuzzy
clustering techniques.

Topology Learning

As mentioned earlier, in the context of Quake, strategic
planning is mostly concerned with the efficient collection
and monopolisation of items and the control of certain
important areas of the map. With this in mind, we first read
the set of all player locations },,{ zyxl =

r
 from the DM2

recording into MatLab via QASE’s DM2Parser, and the
points are clustered to produce a reduced set of positions,
called nodes. We initially employed the Neural Gas
algorithm in this step, since it has been demonstrated to
perform well in topology-learning tasks (Martinez et al
1993); however, we later developed a custom modification
of Elkan’s fast k-means (Elkan 2003) designed to treat the
positions at which items were collected as immovable
“anchor” centroids, thereby deriving a goal-oriented
clustering of the dataset. By examining the sequence of
player positions, we also construct an n x n matrix of edges
E, where n is the number of clusters, and Eij = 1 if the player
was observed to move from node i to node j and 0 otherwise.

Deriving Movement Paths

Because the environment described above may be seen as a
Markov Decision Process, with the nodes corresponding to
states and the edges to transitions, we chose to investigate
approaches to goal-oriented movement based on concepts
from reinforcement learning, in particular the value iteration
algorithm.

To do so, we first read the player’s inventory from the demo
at each timestep, again using QASE’s DM2Parser and the
inventory-tracking system described earlier. In our
experiments, we construct an inventory state vector of 18
elements, specifying the player’s health and armour values
together with the weapons he has collected and the amount
of ammo he has for each. The set of unique state vectors is
then obtained; these state prototypes represent the varying
situations faced by the player during the game session.

We can now construct a set of paths which the player
followed while in each inventory state. These paths consist
of a series of transitions between clusters:

],...,,[,2,1, kiiii ccct =

where ti is a transition sequence (path), and ci,j is a single
node along that sequence. Each path begins at the point
where the player enters a given state, and ends where he
exits that state - in other words, when an item is collected
that causes the player’s inventory to shift towards a different
prototype. See Figure 8 for an illustration of one such path.

Assigning Rewards

Having obtained the different paths pursued by the player in
each inventory state, we turn to reinforcement learning to
reproduce his behaviour. In this scenario, the MDP’s actions
are considered to be the choice to move to a given node from
the current position. Thus, the transition probabilities are

ijEjaisjsP ====),|'(

To guide the agent along the same routes taken by the
player, we assign an increasing reward to consecutive nodes
in each path taken in each prototype, such that

jcpR jii =),(,

Figure 7 - An illustration of program-level imitation; items are
represented as green squares. The player (blue) descends and
re-ascends a staircase, with no objective benefit. The agent
(red) ignores this non-goal-oriented movement, passing the
stairs and heading directly towards the final item pickup.

where pi is a prototype, and ci,j is the jth cluster in the
associated movement sequence. Each successive node along
the path’s length receives a reward greater than the last, until
the final cluster (at which an inventory state change
occurred) is assigned the highest reward. If a path loops
back or crosses over itself en route to the goal, then the
higher values will overwrite the previous rewards, ensuring
that the agent will be guided towards the terminal node while
ignoring any non-goal-oriented diversions. Thus, as
mentioned above, the agent will emulate the player’s
program-level behaviour, instead of simply duplicating his
exact actions. See Figure 7 above for an example.

Learning Utility Values

With the transition probabilities and rewards in place, we
can now run the value iteration algorithm in order to
compute the utility values for each node in the topological
map under each inventory state prototype. The value
iteration algorithm iteratively propagates rewards outwards
from terminal nodes to all others, discounting them by
distance from the reward signal; once complete, these utility
values will represent the “usefulness” of being at that node
while moving to the goal.

In our case, it is important that every node in the map should
possess a utility value under every state prototype by the end
of the learning process, thereby ensuring that the agent will
always receive strong guidance towards its goal. We adopt
the game value iteration approach outlined in (Hartley et al
2004) - the algorithm is applied until all nodes have been
affected by a reward at least once. Figure 9 above shows the
results of the value iteration algorithm on a typical path.

Multiple Weighted Objectives

Faced with a situation where several different items are of
strategic benefit, a human player will intuitively weigh their
respective importance before deciding on his next move. To
model this, we adopt a fuzzy clustering approach. On each
update, the agent’s current inventory is expressed as a
membership distribution across all prototype inventory
states. This is computed as:

∑ =
−

−

= P

i

p
isd

psdsm
1

1

1

),(
),()(rr

rr

where s is the current inventory state, p is a prototype
inventory state, P is the number of prototypes, d -1 is an
inverse-distance or proximity function, and mp(s) is the
degree to which state vector s is a member of prototype p,
relative to all other prototypes. The utility configurations
associated with each prototype are then weighted according
to the membership distribution, and the adjusted
configurations superimposed; we also apply an online
discount to prevent the possibility of backtracking. The
formula used to compute the final utilities is thus:

∑ =
=

P

p pp
ce smcVcU

1
)()()()(γ

}1|{),(max1 =∈=+ xcyt t
ExyyUc

where U(c) is the final utility of node c, γ is the online
discount, e(c) is the number of times the player has entered
cluster c since the last state transition, Vp(c) is the original
value of node c in state prototype p, and E is the edge
matrix.

Object Transience

Another important element of planning behaviour is the
human’s understanding of object transience. A human
player intuitively tracks which items he has collected from
which areas of the map, can easily estimate when they are
scheduled to reappear, and adjusts his strategy accordingly.
In order to capture this, we introduce an activation variable
in the computation of the membership values; inactive items
are nullified, and the membership values are redistributed
among those items which are still active.

∑=
−

−

= P

i i

p
p

isdoa

psdoa
sm

1
1

1

),()(

),()(
)(rr

rr

where a, the activation of an item, is 1 if the object o at the
terminal node of the path associated with prototype state p is
present, and 0 otherwise.

Figure 8 - An example of a path followed by the player while in a
particular inventory state. The path originates in the lower part of
the level, and ends at the point where the player picked up an item
that caused his inventory to shift towards another prototype.

Figure 9 - The ascending rewards assigned to this path (blue/red),
and the results of the value iteration algorithm (green &
magenta). The y-axis deontes the values associated with each
waypoint in the topological map.

Deploying the Agent

With the DM2 data extracted and the required values
computed, we can now deploy the agent. We extend any of
the MatLabBots, overloading preMatLab to extract the
player’s current position and inventory and pass these to
MatLab. We then rewrite the MatLab template to instantiate
the agent and connect it to the server. On each update,
MatLab determines the closest matching state prototype and
node, extracts the relevant utility configuration, finds the set
of nodes connected to the current node by examining the
edge matrix, and selects the successor with the highest utility
value; the position of this node is passed back to QASE. The
agent’s postMatLab method is also overloaded, to
determine the direction between its current position and the
next node, and to set the agent’s movement accordingly. As
the agent traverses its environment, item pickups and in-
game events will cause its inventory to change, resulting in a
corresponding change in the utility values and attracting the
agent towards its next objective. Figure 10 shows the QASE
agent in action.

CONCLUSION

In this paper, we identified the lack of a fully-featured,
consolidated API as a major impediment to the adoption of
commercial games in AI education and research. We then
presented our QASE API, which has been developed to meet
these requirements. Several of its more important features
were described, and their usefulness highlighted. A practical
demonstration of QASE as it has been used in our own
research closed this contribution.

FUTURE WORK

Although we regard it as being very feature-rich and entirely
stable at this point, QASE will continue to develop as we
progress in our research. The two tracks of our work - that of
investigating approaches to imitation learning and of
building an accompanying API - have thus far informed each
other; as mentioned earlier, QASE’s waypoint generator is
derived from the approach outlined in the section QASE and

Imitation Learning. In this way, further developments in our
research will guide future development of the API.

QASE has already attracted some attention in academia;
researchers at Kyushu University in Japan expressed interest
in adopting it for use in their work, and more recently a PhD
student in California has contacted us with the same intent.
As more individuals and institutions discover QASE, the
resulting feedback will aid us in continually improving the
API. We hope that this paper will help to stimulate further
interest in QASE, in imitation learning, and in the potential
of games in AI research and education in general.

To download the API and accompanying documentation,
please visit the QASE homepage: http://qase.vze.com

REFERENCES
 Bauckhage C, Thurau C. & Sagerer G. (2003): Learning Humanlike Opponent

Behaviour for Interactive Computer Games, Pattern Recognition, Vol 2781
 Byrne, R.W. and Russon, A.E. "Learning by Imitation: A Hierarchical

Approach", Behavioral and Brain Sciences (1998) 21, 667-721
 Elkan, C. "Using the Triangle Inequality to Accelerate k-Means", Proc. 20th

International Conference on Machine Learning 2003
 Fairclough, C., Fagan, M., MacNamee, B and Cunningham, P. Research

Directions for AI in Computer Games. Technical report, 2001.
 Floyd, R.W., Algorithm 97, Shortest path, Comm. ACM. 5(6), 1962, 345
 Girlich, U., Unofficial Quake 2 DM2 Format Description, 2000
 Gorman, B & Humphrys, M: “Towards Integrated Imitation of Strategic

Planning and Motion Modelling in Interactive Computer Games”, Proc. 3rd
Intl. Conf. in Computer Game Design & Technology, GDTW05, pages 92-99

 Hartley, T, Mehdi, Q and Gough, N. “Applying Markov Decision Processes to
2D Real-Time Games”, Proc. CGAIDE 2004: p55-59

 Hollnagel, E. (1993) Human reliability analysis: Context and control. L:AP
 Jenkins, OC and Mataric, MJ "Deriving Action and Behavior Primitives from

Human Motion Data". Proc. IEEE/RSJ IROS-2002, pages 2551-2556
 Laird, J. E. and v. Lent, M. (2000). Interactive Computer Games: Human-

Level AI’s Killer Application. AAAI, pages 1171-1178.
 Laird, J.E. Using a Computer Game to develop advanced AI. IEEE Computer,

pages 70 -75, July 2001.
 Martinez, T. and Schulten, K. (1991). A neural gas network learns topologies.

In Artificial Neural Networks. Elseviers Science Publishers
 Naraeyek, A. Computer Games - Boon or Bane for AI Research. Künstliche

Intelligenz, pages 43-44, February 2004
 Schaal, S. Is imitation learning the route to humanoid robots? Trends in

Cognitive Sciences, 3(6):233-242, 1999
 Sklar, E., AD Blair, P Funes & J. Pollack, 1999: Training Intelligent Agents

Using Human Internet Data, 1st Asia-Pacific IAT
 Thurau, C., C. Bauckhage & G. Sagerer 2004a: Learning Humanlike

Movement Behaviour for Computer Games, in Proc. 8th Intl. SAB Conf.
 Thurau, C., C. Bauckhage & G. Sagerer 2004b: Synthesising Movement for

Computer Games, in Pattern Recognition, Vol. 3175 of LCNS Springer

Figure 10 - The agent returns to a previously-visited point before some ammo items have respawned (1.1), and since they are inactive it
initially passes by (1.2); however, their sudden re-emergence (1.2) causes the utilities to reactivate, and the agent is drawn to collect
them (1.3) before continuing (1.4). Later, the agent returns once again (2.1). The items are now active, but since the agent has already
collected several shotgun pickups, the relevant membership values are insignificant; as a result, the agent ignores the pickups (2.2,
2.3), and continues on towards more attractive objectives (2.4)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

