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ABSTRACT 
Modern, commercial computer games rely primarily on AI 
techniques that were developed several decades ago, and until 
recently there has been little impetus to change this. Despite the 
fact that the computer-controlled agents in such games often 
possess abilities far in advance of the limits imposed on human 
participants, competent players are capable of easily beating their 
artificial opponents, suggesting that approaches based on the 
analysis and imitation of human play may produce superior 
agents, in terms of both performance and believability. 

In this paper, we describe our work in imitating the observed 
goal-oriented behaviours of a human player, based on concepts 
from data analysis and reinforcement learning. Since even the 
most intelligent artificial agent will be quickly identified as such 
if it is observed to move in a robotic manner, we also seek to 
incorporate mechanisms that will result in believably humanlike 
motion. We then present some illustrative examples, 
demonstrating the effectiveness of our model. Finally, we discuss 
future work in this field. 
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clustering, statistical analysis, reinforcement learning. 

1. INTRODUCTION 

1.1 Imitation Learning and Games 
Imitation learning is a field of pattern recognition wherein agents 
learn to perform complex procedures by first examining a 
demonstration of the task. Imitative techniques have been adopted 
by many researchers in the field of robotics, as a means of 
“bootstrapping” their machines’ intelligence  [6]. Despite the 
interest exhibited by the robotics community, however, very few 
attempts have been made to apply these principles to interactive 
computer games, with the notable exception of Thurau et al 
 [7] [8]. Given that modern games allow the recording of entire 
sessions, that vast online libraries of samples are in many cases 
already available, and that - rather than limb movement data or 
similar - these recordings encode the frame-by-frame behaviour of 
the player under rapidly-changing conditions and in competition 
with opponents of comparative skill, it becomes clear that games 
are an ideal platform for research in imitation learning. 

From the industry’s point of view, imitation learning would seem 
to offer more potential for future development than the outdated, 
symbolic systems upon which computer games have traditionally 

relied  [2] [3] [4] [5]. From the academic standpoint, commercial 
games provide a far greater range of challenges and opportunities 
than those games (chess and its ilk) which have typically been 
used in research The goal of imitation learning in computer 
games, then, is to construct models which explain and accurately 
reproduce the recorded behaviours, thereby 'reverse-engineering' 
the player's decision-making process from its observed results. 

For our experiments, we opted to investigate the first-person 
shooter genre, due to the fact that it provides a relatively direct 
mapping of human decisions onto agent actions as compared with 
other genres. We ultimately chose iD Software’s Quake 2 as our 
test environment; it was prominent in the literature, and thanks to 
Laird  [19] had become the de facto standard for research of this 
nature. Figure 1 below shows a typical Quake 2 environment, 
with various features labelled. In order to extract the required data 
from Quake 2’s recorded DM2 demo files (basically an edited 
copy of the network traffic received during the session) and to 
realise the in-game agents, we employ our own custom API. 

2. METHODOLOGY 

2.1 Overview 
Our approach focuses on the tendency of competent players to 
cycle the environment in a strategic manner, collecting items to 
strengthen his character while denying them to other players; 
thus, we define the player’s goals to be the items scattered at 

 
Figure 1 - Typical Quake 2 environment 



fixed points around each level. Given a particular situation, the 
player attempts to collect weapons, ammunition or armor which 
will better his condition. By learning the mappings between the 
player’s status and his subsequent item pickups, the bot can 
intelligently react to its current situation and will be capable of 
determining its objectives, allowing the agent to adapt observed 
strategies to situations which the player may not have faced. 

2.2 Behavior Model 
One of the first questions which arises when considering the 
problem of imitation learning is, quite simply, “what behaviours 
does the demonstration encode?” To this end, Thurau et al  [7] 
propose a model of in-game behaviour based closely on 
Hollnagel’s Contextual Control Model  [15], shown in Figure 2. 

Strategic behaviours refer to actions the player takes with long-
term goals in mind; these include maximising the number of 
weapons or items he possesses, controlling certain areas of the 
map, and so forth. Tactical behaviours are mostly concerned with 
localised tasks such as evading or engaging opponents. Reactive 
behaviours involve little or no planning; the player simply reacts 
to stimuli in his immediate surroundings. Motion modelling refers 
to the imitation of the player’s movement; in theory, this should 
produce humanlike motion along the bot’s path, and should also 
prevent the agent from performing actions which are impossible 
for the human player’s mouse-and-keyboard interface 
(instantaneous 180˚ turning, perfect aim, etc). 

In a number of contributions  [13] [14], the ability of agents to 
exhibit long-term strategic planning consistently emerges as a key 
factor in determining its “believability”. In the context of Quake 
and similar games, equivalent importance must be given to the 
imitation of humanlike motion; an agent which does not exhibit 
the idiosyncrasies of a human player will easily be identified as a 
fake, regardless of how impressive its planning abilities are. 
Therefore, we concentrate on developing and integrating the 
strategic and motion modelling levels of the hierarchy. 

2.3 Goal-Oriented Strategic Behaviour 
In order to learn long-term strategic behaviours from human 
demonstration, we developed a model designed to emulate the 
notion of program level imitation discussed by Byrne and Russon 
 [12]; in other words, to identify the demonstrator’s intent, rather 
than simply reproducing his precise actions. Thurau et al  [7] 

present an approach to such behaviours based on artificial 
potential fields; here we consider the application of reinforcement 
learning and fuzzy clustering techniques. 

2.3.1 Topology Learning 
As mentioned earlier, in the context of Quake, strategic planning 
is mostly concerned with the efficient collection and 
monopolisation of items and the control of certain important areas 
of the map. With this in mind, we first read the set of all player 
locations },,{ zyxl =
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are clustered to produce a reduced set of typical positions, called 
nodes. We developed a custom modification of Elkan’s fast k-
means  [1] designed to treat the positions at which items were 
collected as immovable “anchor” centroids, thereby deriving a 
goal-oriented clustering of the dataset. By examining the 
sequence of player positions, we also construct an n x n matrix of 
edges E, where n is the number of clusters, and Eij = 1 if the 
player was observed to move from node i to node j and 0 
otherwise. 

2.3.2 Deriving Movement Paths 
Because the environment described above may be seen as a 
Markov Decision Process, with the nodes corresponding to states 
and the edges to transitions, we chose to investigate approaches to 
goal-oriented movement based on concepts from reinforcement 
learning, in particular the value iteration algorithm. 
To do so, we first read the player’s inventory from the demo at 
each timestep. In our experiments, we construct an inventory state 
vector of 18 elements, specifying the player’s health and armour 
values together with the weapons he has collected and the amount 
of ammo he has for each. The set of unique state vectors is then 
obtained; these state prototypes represent the varying situations 
faced by the player during the game session. 
We can now construct a set of paths which the player followed 
while in each inventory state. These paths consist of a series of 
transitions between clusters: 
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where ti is a transition sequence (path), and ci,j is a single node 
along that sequence. Each path begins at the point where the 
player enters a given state, and ends where he exits that state - in 
other words, when an item is collected that causes the player’s 
inventory to shift towards a different prototype. Figure 3 
illustrates a typical path followed in one such prototype. 

2.3.3 Assigning Rewards 
Having obtained the different paths pursued by the player in each 
inventory state, we turn to reinforcement learning to reproduce his 
behaviour. In this scenario, the MDP’s actions are considered to 
be the choice to move to a given node from the current position. 
Thus, the transition probabilities are 
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where s is the current node, s’ is the next node, a is the executed 
action, and E is the edge matrix. 

 
Figure 2 - Thurau’s adaptation of Hollnagel's COCOM 



To guide the agent along the same routes taken by the player, we 
assign an increasing reward to consecutive nodes in every path 
taken under each prototype, such that 

jcpR jii =),( ,  
where pi is a prototype, and ci,j is the jth cluster in the associated 
movement sequence. Each successive node along the path’s 
length receives a reward greater than the last, until the final 
cluster (at which an inventory state change occurred) is assigned 
the highest reward. If a path loops back or crosses over itself en 
route to the goal, then the higher values will overwrite the 
previous rewards, ensuring that the agent will be guided towards 
the terminal node while ignoring any non-goal-oriented 
diversions. Thus, as mentioned above, the agent will emulate the 
player’s program-level behaviour, instead of simply duplicating 
his exact actions. 

2.3.4 Learning Utility Values 
With the transition probabilities and rewards in place, we can now 
run the value iteration algorithm in order to compute the utility 
values for each node in the topological map under each inventory 
state prototype. The value iteration algorithm iteratively 
propagates rewards outwards from terminal nodes to all others, 
discounting them by distance from the reward signal; once 
complete, these utility values will represent the “usefulness” of 
being at that node while moving to the goal.  
In our case, it is important that every node in the map should 
possess a utility value under every state prototype by the end of 
the learning process, thereby ensuring that the agent will always 
receive strong guidance towards its goal. We therefore adopt the 
game value iteration approach outlined by Hartley et al  [17]; the 
algorithm is applied until all nodes have been affected by a 
reward at least once - that is, until every node has a non-zero 
utility value. 

2.3.5 Multiple Weighted Objectives 
Faced with a situation where several different items are of 
strategic benefit, a human player will intuitively weigh their 
respective importance before deciding on his next move. To 
model this, we adopt a fuzzy clustering approach. On each update, 
the agent’s current inventory is expressed as a membership 
distribution across all prototype inventory states, based on its 
relative similarity to each. This is computed as follows: 
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where s is the current inventory state, p is a prototype inventory 
state, P is the number of prototypes, d -1 is an inverse-distance or 
proximity function, and mp(s) is the degree to which state vector s 
is a member of prototype p, relative to all other prototypes. The 
utility configurations associated with each prototype are then 
weighted according to the membership distribution, and the 
adjusted configurations superimposed; we also apply an online 
discount to prevent the possibility of backtracking. The formula 
used to compute the final utilities is thus: 
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where U(c) is the final utility of node c, γ is the online discount, 
e(c) is the number of times the player has entered cluster c since 
the last state transition, Vp(c) is the original value of node c in 
state prototype p, and E is the edge matrix. Figure 4 shows the 
results of the value iteration process on a typical path. 

2.3.6 Object Transience 
Another important element of planning behaviour is the human’s 
understanding of object transience. A human player intuitively 
tracks which items he has collected from which areas of the map, 
can easily estimate when they are scheduled to reappear, and 
adjusts his strategy accordingly. To capture this, we introduce an 
activation variable in the computation of the membership values; 
inactive items are nullified, and the membership values are 
redistributed among items which are still active: 

∑=
−

−

= P

i i

p
p

isdoa

psdoa
sm

1
1

1

),()(

),()(
)( rr

rr

 

where a, the activation of an item, is 1 if the object o at the 
terminal node of the path associated with prototype state p is 
present, and 0 otherwise. See the Experiments section for an 
illustration of the navigation system in operation. 

 
Figure 3 - An example of a path followed by the player while 
in a particular inventory state. 

 
Figure 4 - Rewards (blue/red) and utilities (green/magenta) 
assigned to this path, as represented by the y-axis. 



2.4 Motion Modelling 
As discussed earlier, the illusion created by even the most 
intricate planning behaviours will be shattered if the agent is 
observed to move in an unconvincing manner; it therefore 
becomes imperative to implement a mechanism capable of 
imitating the human player’s motion. To do so, we draw on the 
theory of action primitives, as outlined by various researchers in 
the field of robotic imitation and behavioural science  [9] [10]. 
Action primitives are a basis set of modularised motor commands 
which are sufficient, through combination operators, for 
generating entire movement repertoires  [11]. A means of deriving 
such primitives from demonstration in Quake was first proposed 
by Thurau et al  [8]; we adopt the same approach, while modifying 
it to suit our needs. 
We first read the sequence of actions executed by the player at 
each interval during the game session. In our current model, this 
results in a set of four-dimensional vectors as shown below: 

v = [yaw, pitch, fire, jump] 
That is, the angular orientation of the player in each plane, 
whether he is firing his weapon, and whether he is jumping. We 
then cluster the set, thereby aggregating similar actions executed 
at different times or locations, and reducing the data to a smaller 
set of prototypical actions, otherwise known as primitives. 
In order to reconstruct the human player’s motion, the agent must 
also learn how to sequence these primitives. To this end, we 
employ a series of probability functions similar to Thurau. In that 
case, however, the primitives were used in isolation; they were 
not underpinned by a dedicated navigation system. We must 
therefore adapt the approach, such that the strategic planning 
system outlined earlier is responsible for navigation around the 
environment, and the motion modelling system is layered on top. 
Since the player’s action depends on his current location in the 
environment, the probability of executing a particular action 
primitive vi when the agent is within the Voronoi region of node 
wk in the topological map was originally written as 

)()( kii wvPvP =  

However, in our new model, this could lead to situations where an 
incongruous primitive is chosen if the agent is currently at a node 
with more than one possible successor; for instance, if the 
navigation system chooses to move left, but the motion-modelling 
system chooses a primitive which the player executed while 
moving to the right. To constrain the motion model such that it 
adheres to the paths chosen by the navigation system, we choose 
primitives not based on the current node w, but rather on the edge 
e along which the agent is travelling; that is, 

)()( kii evPvP =  

The conditional probabilities can be computed by re-examining 
the recorded data. Each action in the training set can be associated 
with an edge in the topological map, and it can be associated with 
an action primitive. By counting the number of times a particular 
action primitive is observed to be executed on a given edge, an m 
x n matrix is formed where m is the number of edges and n is the 
number of action primitives; the probabilities are then deduced by 
simply normalising the rows of the matrix. An entry at position (k, 
i) thus indicates the probability P(vi | ek ) as above. 

Of course, not every action primitive can be executed as the 
successor of every other; there is a constrained ordering of 
primitives which defines the behaviours exhibited by the player. 
As such, it is necessary to define a condition which expresses the 
probability of performing a particular action given the previously-
executed action: 

)()( lii vvPvP =  

where vl is the action which was executed on the last time step. 
These probabilities are computed in a similar manner to the 
above; an n x n transition matrix is constructed, and populated by 
observing the sequence of actions from the demo. The overall 
probability of executing action primitive i is therefore given as 
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Far from being a simple aesthetic effect, motion modelling also 
has an important functional element. If the human player reached 
a particular point in the level by performing some action other 
than simply running (e.g. jumping), then the navigation system 
alone will not be able to reach it. In other words, the goal-oriented 
navigation system defines where the agent needs to go, while the 
action primitives provide the means to get there. A good 
illustration of this is outlined in Figure 6 below. 

3. EXPERIMENTS 
Having developed the behaviour model described above, we 
proceeded to carry out a number of experiments to verify its 
effectiveness. Experiments were designed to test both the goal-
oriented navigation and motion modeling systems, as well as 
examining their interaction with one another. 

3.1 Goal-Oriented Navigation 
3.1.1 Pickup Sequences 
To evaluate the agents’ ability to learn the human’s strategic 
behaviour, we first conducted 150 separate tests on 30 sequences 
of item pickups spanning four different game levels, some of 
which incorporated environmental features such as interaction 
with moving elevator platforms. For each set of five tests, the first 
attempt placed the agent at the same starting position as the 
player; the four subsequent tests placed the bot at a random 
position along the sequence. When starting at the same location as 
the player, the agent was expected to reproduce the exact 
sequence of pickups. When starting at each of the random 
positions, it was expected to attempt to reproduce the sequence if 
possible; however, if its starting location caused it to collect an 
object while en route to the first item in the sequence, the agent 
was expected to deal with this unencountered situation 
appropriately. Because these samples represented isolated pickup 
sequences rather than continuous gameplay, the agent did not take 
item respawns into account - this was tested separately on several 
more extensive samples, as described later. Also, to account for 
the random positioning of the agent, we made each internodal link 
in the topological map bi-directional. For each test, the number of 
seconds taken for the bot to complete its task was recorded, and 
can be compared with the human player’s time. These results are 
summarized below. 



As can be seen, the agent successfully completed each task, 
although with greatly varying times. When the agent starts at the 
same point as the human, the times are generally quite similar; in 
some cases, the agent actually manages to complete the collection 
sequence faster than the human, since it will (as noted above) 
ignore any non-goal-oriented movements present in the gameplay 
sample. The larger deviations observed in the random tests are 
due to the fact that the agent often started at around the midway 
point of the sequence, requiring it to collect all subsequent items 
before doubling-back to pick up the remainder. Some minor 
issues were noted - very occasional repetition of paths, rough 
motion between waypoints, both caused mostly by the artificial 
addition of bidirectional edges - but overall the bot showed 
impressive performance and adaptability to unseen circumstances. 

3.1.2 Continuous Gameplay 
While useful for a numerical comparison, however, these isolated 
pickup sequences do not fully test the agent’s planning abilities. A 
more instructive examination of its performance can be made by 
supplying more extensive gameplay samples, wherein the player 
is observed to cycle continuously around the map in accordance 
with his changing state. We therefore trained the agent on four 
extended demonstrations across two different levels, where the 
human player had more scope to develop the kind of elaborate 
strategy typically seen in a live game session. Here, the direction 
in which the player traverses the map is often an important 
element of his strategy, allowing him to collect weapons before 
their relevant ammunition, or to build up armor reserves before 
entering the open areas of the level; consequently, edges in the 
topological map are taken as being unidirectional, except in cases 
where the player was explicitly observed to move along them in 
both directions. The objective-weighting and item transience 
mechanisms resulted in the emergence of a noticeably more 
complex, more involved long-term planning behaviour. Rather 
than simply cycling the map from one pickup to the next, the 

agents were instead observed to react dynamically to changes in 
an object’s activation, to concentrate on areas of the map which 
were favoured by the human player over the course of his 
demonstration, and to give added significance to regions which 
were more heavily populated with beneficial items. For instance, 
in several samples the player was observed to first obtain a full 
complement of weaponry, after which he would patrol specific 
areas of the map which contained many of the most useful items; 
the agent took this into account by concentrating on those same 
areas throughout its test run. 

The only issue noted during these tests was an occasional 
‘indecisiveness’ at points where multiple paths intersected - that 
is, the agent would sometimes move circuitously among several 
neighbouring nodes, due to a small spike in the overlapping utility 
values. In such cases, however, the impasse was quickly resolved 
by the online discount, resulting in minimal disruption to the 
agent’s movement. 

Illustrative examples of the weighting and activation functions are 
shown in Figure 5 below. It is important to note, however, that 
these microcosmic examples are not as important on the wider 
scale as they may first appear. While it is fortunate that some 
items happened to respawn while the bot was in the vicinity, thus 
providing some excellent demonstrations of the mechanisms 
involved, the very fact that the agent was able to resolve these 
reappearances in the short-term negates their long-term planning 
importance. Additionally, although it is tempting to view the 
agent’s behaviour as a response to immediate visual stimuli, it 
bears re-stating that the agent is internally tracking the times at 
which the inactive items are scheduled to respawn - it therefore 
perceives these reappearances no differently than it does the 
reactivation of items in other areas of the map. The more 
significant implications of this mechanism occur when the agent 
realizes that items at medium or greater distances from its current 

 Dataset Player Bot (Same SP) Random 1 Random 2 Random 3 Random 4
Sample 1 24.8 14.2 25.4 36.7 23.6 20.1 

Sample 6 12.0 11.8 16.1 15.3 21.4 18.1 

Sample 7 15.8 10.8 11.1 10.8 12.6 15.9 

Sample 9 79.2 51.0 76.9 72.1 61.3 76.9 

M
ap 1: q2dm

1 Sample 10 60.8 47.1   46.8 71.7 50.9 72.5 

Sample 11 32.8 43.1 56.0 68.7 58.2 65.7 

Sample 12 35.6 45.3 44.7 50.4 70.8 45.5 

Sample 13 28.4 37.3 42.9 48.7 56.7 44.5 

Sample 18 54.4 20.6 31.2 22.7 20.4 37.2 

Sample 19 20.8 12.7 43.3 12.9 43.5 20.7 

M
aps 2-3: q2dm

5,7 Sample 20 50.4 29.3 76.9 31.0 33.4 31.2 

Sample 21 20.0 17.3 15.8 13.5 11.2 12.2 

Sample 22 38.4 51.3 43.0 40.1 59.8 47.4 

Sample 26 20.2 24.6 22.8 22.7 30.2 24.0 

Sample 27 28.8 37.9 55.8 35.2 35.6 52.1 

M
ap 4: q2dm

8 Sample 30 24.8 29.6 28.3 30.0 34.0 35.1 



position have respawned, leading it to adjust its long-term 
strategic goals accordingly. A full gameplay example is shown 
and briefly discussed in Figure 7, in the appendix. 

3.2 Motion Modelling 
In order to test the functional and aesthetic aspects of the motion-
modelling system, we ensured that the recorded demonstrations 
adhered to certain criteria: 
1. some items were collected specifically because they required 

the human player to interact with the environment - that is, in 
order to collect the same item, the agent would need to learn 
and perform similar actions. 

2. the human player exhibited certain behavioural traits in the 
course of the recording; the agent was expected to adopt 
similar mannerisms in its play. 

In each case, the effectiveness of the motion-modelling system in 
capturing the distinct style of the human’s play was observed. 
Because the collection of items mentioned in point 1 above 
requires the motion-modelling system to augment the standard 
navigation system - for instance, by jumping across a chasm - the 
experiments also test these systems’ ability to interact with one 
another. Some examples of the resulting agent are illustrated in 
Figure 6 below, which notes both the humanlike visual 
appearance of the bot’s movement, and its ability to perform the 
actions necessary to negotiate such environmental challenges. 

4. CONCLUSION 
 In this paper, we first described an approach to generating an 
explicitly goal-oriented topological map from observation data. 
We then proposed a modified value iteration approach as a means 
of learning the paths traversed by the player, in order to find a 
mapping from the player’s current state to his subsequent 
strategy. We further outlined a mechanism based on fuzzy 
clustering which allows the agent to pursue multiple weighted 
goals in parallel. A system which imitates the human player’s 
comprehension of object transience and his ability to dynamically 

re-evaluate his current strategy was also presented. We then 
discussed an approach to the extraction and sequencing of action 
primitives, which allow the agent to manifest humanlike 
idiosyncrasies as it pursues its strategic goals. Finally, a series of 
experiments designed to demonstrate the model’s effectiveness 
were described. 

Agents were observed to very accurately convey the impression 
of being a human rather than artificial player. In the short term, 
the imitation of human motion - particularly such nuances as 
visually examining an upcoming obstacle, which a computer-
controlled character would never need to do - gave strong 
indicators that this was more than a simple AI player. In the 
longer-term, the emergence of a cohesive, consistent strategy 
further reinforced that initial view. Preliminary, informal 
questioning of independent observers confirmed these findings; 
we intend to fully verify this by conducting a detailed 
believability study in the near future. 

5. FUTURE WORK 
One of the shortcomings of the current system is its inherently 
disjoint nature - that is, the motion modeling system is layered on 
top of the strategic-planning system, with no communication and 
only minimal relation between them. The planning module picks 
the next edge to traverse, and the motion module picks the actions 
on that basis, with no regard for the agent’s condition or 
objectives. While this does result in humanlike motion along 
demonstrably strategic paths, it is far from ideal. We are therefore 
investigating, in conjunction with Christian Thurau, an alternative 
system based on Christian’s adaptation of Rao et al’s Bayesian 
model of action sequencing  [18]. This formulates the probability 
of each action as a function of not only the previous action, but 
also the current state and goal; it is therefore a natural fit for the 
strategic system described here. Not only will this provide us with 
a forward model to determine the next action to be executed, but 
it will also act as an inverse model, allowing us to determine the 
probability that the agent is pursuing each goal by simple 
observation of its action sequence. 

 

 

 
Figure 5 - Two sequences showing the objective-weighting and item transience mechanisms. Top, the agent (white circle)  returns to a 
previously-visited point before some ammo items (red circles) have respawned (1.1), and since they are inactive it initially passes by 
(1.2); however, their sudden re-emergence (1.2) causes the utilities to reactivate, and the agent is drawn to collect them (1.3) before 
continuing (1.4). In a different session, the agent is moving along a path (2.1) as a row of armour shards respawns behind it (2.2). It 
reacts at once, turning around to collect the items (2.3), before resuming its course (2.4). 



6.  ACKNOWLEDGMENTS 
This work is kindly sponsored by the Irish Research Council for 
Science, Engineering and Technology’s EMBARK initiative. 

7. REFERENCES 
[1] Elkan, C. "Using the Triangle Inequality to Accelerate k-Means", 

Proceedings of 20th ICML 2003 

[2] Laird, J. E. and v. Lent, M. (2000). Interactive Computer Games: 
Human-Level AI’s Killer App AAAI, 1171-1178 

[3] C. Fairclough, M. Fagan, B. MacNamee, and P. Cunningham. 
Research Directions for AI in Computer Games. TCD, 2001. 

[4] A. Naraeyek. Computer Games - Boon or Bane for AI Research. 
Künstliche Intelligenz, pages 43-44, February 2004 

[5] D Charles, S McGlinchey, “The Past, Present and Future of Artificial 
Neural Networks in Games”, CGAIDE 2004: p167 

[6] S. Schaal. Is imitation learning the route to humanoid robots? Trends 
in Cognitive Sciences, 3(6):233-242, 1999 

[7] Thurau, C., C. Bauckhage & G. Sagerer 2004a: Learning Humanlike 
Movement Behaviour for Computer Games, in Proc. 8th SAB Conf. 

[8] Thurau, C., C. Bauckhage & G. Sagerer 2004b: Synthesising 
Movement for Computer Games, in Pattern Recognition, Vol. 3175 
of LCNS 

[9] OC Jenkins and MJ Mataric, "Automated Derivation of Behavior 
Vocabularies for Autonomous Humanoid Motion", Proceedings of 
the Second AAMAS (2003) 

[10] Thoroughman KA, Shadmehr R: Learning of action through adaptive 
combination of motor primitives. Nature 407: 742-747 

[11] A. Fod and M. Mataric and O. Jenkins: Automated Derivation of 
Primitives for Movement Classification, Autonomous Robots,12 (1), 
pp. 39--54, 2002 

[12] R.W. Byrne, A.E. Russon, "Learning by Imitation: A Hierarchical 
Approach", Behavioral & Brain Sciences 21 

[13] J. E. Laird. Using a Computer Game to develop advanced AI, IEEE 
Computer, pages 70 -75, July 2001. 

[14] Wallace, SA, Laird, JE: Behavior Bounding: Toward Effective 
Comparisons of Agents & Humans IJCAI 2003: 727-732 

[15] Hollnagel, E. (1993) Human reliability analysis: Context and control. 
London: Academic Press  

[16] D Livingstone & S McGlinchey, “What Believability Testing Can 
Tell Us”, Proceedings of CGAIDE 2004: p273 

[17] T Hartley, Q Mehdi, N Gough, “Applying Markov Decision 
Processes to 2D Real-Time Games”, CGAIDE 2004: p55-59 

[18] RPN Rao, AP Shon, AN Meltzoff, “A Bayesian Model of Imitation 
in Infants and Robots”, Cambridge University Press 2004 

[19] J.E. Laird, J.C. Duchi, Creating human-like synthetic characters with 
multiple skill-levels: a case study using the Soar quakebot, in: 
Proceedings of the AAAI Fall Symposium Technical Report, 2000. 

 

 

 

 
Figure 6 - Examples of the aesthetic (top) and functional (middle) aspects of the motion-modelling system; the bottom sequence 
demonstrates a combination of both. The top sequence shows the agent leaning into and strafing around a corner, as a human player 
does. In the middle, the agent’s next goal is an item on top of the box. As it approaches, it looks downwards, jumps, and fires a rocket 
to propel itself upwards. This so-called rocket jump is considered an advanced move and is commonly employed by players to reach 
inaccessible areas. Bottom, the agent interacts with a lift by standing still as it ascends (functional) and then jumping off at the top, an 
unnecessary action which is nonetheless common among human players (aesthetic). 



8. APPENDIX 

 

 
Figure 7 - One of the continuous gameplay samples; the agent (red) successfully reproduced the observed behaviour (blue) - 
including interaction with an elevating lift platform, represented by the vertical line in the centre of the visualisation - having 
started at a different point (red diamond) than the demonstrator (blue diamond). Because of this, it was not possible to simply 
reproduce the exact sequence of pickups - instead, the agent was forced to rely on its objective-weighting mechanism. 
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