
Towards Integrated Imitation of Strategic Planning and
Motion Modelling in Interactive Computer Games

Bernard Gorman
Dublin City University
Glasnevin, Dublin 9

Rep. of Ireland
+353 1 4902714

bernard.gorman@computing.dcu.ie

Mark Humphrys
Dublin City University
Glasnevin, Dublin 9

Rep. of Ireland
+353 1 700 8059

mark.humphrys@computing.dcu.ie

ABSTRACT
Modern, commercial computer games rely primarily on AI
techniques that were developed several decades ago, and until
recently there has been little impetus to change this. Despite the
fact that the computer-controlled agents in such games often
possess abilities far in advance of the limits imposed on human
participants, competent players are capable of easily beating their
artificial opponents, suggesting that approaches based on the
analysis and imitation of human play may produce superior
agents, in terms of both performance and believability.

In this paper, we describe our work in imitating the observed
goal-oriented behaviours of a human player, based on concepts
from data analysis and reinforcement learning. Since even the
most intelligent artificial agent will be quickly identified as such
if it is observed to move in a robotic manner, we also seek to
incorporate mechanisms that will result in believably humanlike
motion. We then present some illustrative examples,
demonstrating the effectiveness of our model. Finally, we discuss
future work in this field.

Keywords
Imitation learning, pattern recognition, artificial intelligence,
clustering, statistical analysis, reinforcement learning.

1. INTRODUCTION

1.1 Imitation Learning and Games
Imitation learning is a field of pattern recognition wherein agents
learn to perform complex procedures by first examining a
demonstration of the task. Imitative techniques have been adopted
by many researchers in the field of robotics, as a means of
“bootstrapping” their machines’ intelligence [6]. Despite the
interest exhibited by the robotics community, however, very few
attempts have been made to apply these principles to interactive
computer games, with the notable exception of Thurau et al
 [7] [8]. Given that modern games allow the recording of entire
sessions, that vast online libraries of samples are in many cases
already available, and that - rather than limb movement data or
similar - these recordings encode the frame-by-frame behaviour of
the player under rapidly-changing conditions and in competition
with opponents of comparative skill, it becomes clear that games
are an ideal platform for research in imitation learning.

From the industry’s point of view, imitation learning would seem
to offer more potential for future development than the outdated,
symbolic systems upon which computer games have traditionally

relied [2] [3] [4] [5]. From the academic standpoint, commercial
games provide a far greater range of challenges and opportunities
than those games (chess and its ilk) which have typically been
used in research The goal of imitation learning in computer
games, then, is to construct models which explain and accurately
reproduce the recorded behaviours, thereby 'reverse-engineering'
the player's decision-making process from its observed results.

For our experiments, we opted to investigate the first-person
shooter genre, due to the fact that it provides a relatively direct
mapping of human decisions onto agent actions as compared with
other genres. We ultimately chose iD Software’s Quake 2 as our
test environment; it was prominent in the literature, and thanks to
Laird [19] had become the de facto standard for research of this
nature. Figure 1 below shows a typical Quake 2 environment,
with various features labelled. In order to extract the required data
from Quake 2’s recorded DM2 demo files (basically an edited
copy of the network traffic received during the session) and to
realise the in-game agents, we employ our own custom API.

2. METHODOLOGY

2.1 Overview
Our approach focuses on the tendency of competent players to
cycle the environment in a strategic manner, collecting items to
strengthen his character while denying them to other players;
thus, we define the player’s goals to be the items scattered at

Figure 1 - Typical Quake 2 environment

fixed points around each level. Given a particular situation, the
player attempts to collect weapons, ammunition or armor which
will better his condition. By learning the mappings between the
player’s status and his subsequent item pickups, the bot can
intelligently react to its current situation and will be capable of
determining its objectives, allowing the agent to adapt observed
strategies to situations which the player may not have faced.

2.2 Behavior Model
One of the first questions which arises when considering the
problem of imitation learning is, quite simply, “what behaviours
does the demonstration encode?” To this end, Thurau et al [7]
propose a model of in-game behaviour based closely on
Hollnagel’s Contextual Control Model [15], shown in Figure 2.

Strategic behaviours refer to actions the player takes with long-
term goals in mind; these include maximising the number of
weapons or items he possesses, controlling certain areas of the
map, and so forth. Tactical behaviours are mostly concerned with
localised tasks such as evading or engaging opponents. Reactive
behaviours involve little or no planning; the player simply reacts
to stimuli in his immediate surroundings. Motion modelling refers
to the imitation of the player’s movement; in theory, this should
produce humanlike motion along the bot’s path, and should also
prevent the agent from performing actions which are impossible
for the human player’s mouse-and-keyboard interface
(instantaneous 180˚ turning, perfect aim, etc).

In a number of contributions [13] [14], the ability of agents to
exhibit long-term strategic planning consistently emerges as a key
factor in determining its “believability”. In the context of Quake
and similar games, equivalent importance must be given to the
imitation of humanlike motion; an agent which does not exhibit
the idiosyncrasies of a human player will easily be identified as a
fake, regardless of how impressive its planning abilities are.
Therefore, we concentrate on developing and integrating the
strategic and motion modelling levels of the hierarchy.

2.3 Goal-Oriented Strategic Behaviour
In order to learn long-term strategic behaviours from human
demonstration, we developed a model designed to emulate the
notion of program level imitation discussed by Byrne and Russon
 [12]; in other words, to identify the demonstrator’s intent, rather
than simply reproducing his precise actions. Thurau et al [7]

present an approach to such behaviours based on artificial
potential fields; here we consider the application of reinforcement
learning and fuzzy clustering techniques.

2.3.1 Topology Learning
As mentioned earlier, in the context of Quake, strategic planning
is mostly concerned with the efficient collection and
monopolisation of items and the control of certain important areas
of the map. With this in mind, we first read the set of all player
locations },,{ zyxl =

r
 from the DM2 recording, and the points

are clustered to produce a reduced set of typical positions, called
nodes. We developed a custom modification of Elkan’s fast k-
means [1] designed to treat the positions at which items were
collected as immovable “anchor” centroids, thereby deriving a
goal-oriented clustering of the dataset. By examining the
sequence of player positions, we also construct an n x n matrix of
edges E, where n is the number of clusters, and Eij = 1 if the
player was observed to move from node i to node j and 0
otherwise.

2.3.2 Deriving Movement Paths
Because the environment described above may be seen as a
Markov Decision Process, with the nodes corresponding to states
and the edges to transitions, we chose to investigate approaches to
goal-oriented movement based on concepts from reinforcement
learning, in particular the value iteration algorithm.
To do so, we first read the player’s inventory from the demo at
each timestep. In our experiments, we construct an inventory state
vector of 18 elements, specifying the player’s health and armour
values together with the weapons he has collected and the amount
of ammo he has for each. The set of unique state vectors is then
obtained; these state prototypes represent the varying situations
faced by the player during the game session.
We can now construct a set of paths which the player followed
while in each inventory state. These paths consist of a series of
transitions between clusters:

],...,,[,2,1, kiiii ccct =

where ti is a transition sequence (path), and ci,j is a single node
along that sequence. Each path begins at the point where the
player enters a given state, and ends where he exits that state - in
other words, when an item is collected that causes the player’s
inventory to shift towards a different prototype. Figure 3
illustrates a typical path followed in one such prototype.

2.3.3 Assigning Rewards
Having obtained the different paths pursued by the player in each
inventory state, we turn to reinforcement learning to reproduce his
behaviour. In this scenario, the MDP’s actions are considered to
be the choice to move to a given node from the current position.
Thus, the transition probabilities are

ijEjaisjsP ====),|'(

where s is the current node, s’ is the next node, a is the executed
action, and E is the edge matrix.

Figure 2 - Thurau’s adaptation of Hollnagel's COCOM

To guide the agent along the same routes taken by the player, we
assign an increasing reward to consecutive nodes in every path
taken under each prototype, such that

jcpR jii =),(,
where pi is a prototype, and ci,j is the jth cluster in the associated
movement sequence. Each successive node along the path’s
length receives a reward greater than the last, until the final
cluster (at which an inventory state change occurred) is assigned
the highest reward. If a path loops back or crosses over itself en
route to the goal, then the higher values will overwrite the
previous rewards, ensuring that the agent will be guided towards
the terminal node while ignoring any non-goal-oriented
diversions. Thus, as mentioned above, the agent will emulate the
player’s program-level behaviour, instead of simply duplicating
his exact actions.

2.3.4 Learning Utility Values
With the transition probabilities and rewards in place, we can now
run the value iteration algorithm in order to compute the utility
values for each node in the topological map under each inventory
state prototype. The value iteration algorithm iteratively
propagates rewards outwards from terminal nodes to all others,
discounting them by distance from the reward signal; once
complete, these utility values will represent the “usefulness” of
being at that node while moving to the goal.
In our case, it is important that every node in the map should
possess a utility value under every state prototype by the end of
the learning process, thereby ensuring that the agent will always
receive strong guidance towards its goal. We therefore adopt the
game value iteration approach outlined by Hartley et al [17]; the
algorithm is applied until all nodes have been affected by a
reward at least once - that is, until every node has a non-zero
utility value.

2.3.5 Multiple Weighted Objectives
Faced with a situation where several different items are of
strategic benefit, a human player will intuitively weigh their
respective importance before deciding on his next move. To
model this, we adopt a fuzzy clustering approach. On each update,
the agent’s current inventory is expressed as a membership
distribution across all prototype inventory states, based on its
relative similarity to each. This is computed as follows:

∑ =
−

−

= P

i

p
isd

psdsm
1

1

1

),(
),()(rr

rr

where s is the current inventory state, p is a prototype inventory
state, P is the number of prototypes, d -1 is an inverse-distance or
proximity function, and mp(s) is the degree to which state vector s
is a member of prototype p, relative to all other prototypes. The
utility configurations associated with each prototype are then
weighted according to the membership distribution, and the
adjusted configurations superimposed; we also apply an online
discount to prevent the possibility of backtracking. The formula
used to compute the final utilities is thus:

∑ =
=

P

p pp
ce smcVcU

1
)()()()(γ

}1|{),(max1 =∈=+ xcyt t
ExyyUc

where U(c) is the final utility of node c, γ is the online discount,
e(c) is the number of times the player has entered cluster c since
the last state transition, Vp(c) is the original value of node c in
state prototype p, and E is the edge matrix. Figure 4 shows the
results of the value iteration process on a typical path.

2.3.6 Object Transience
Another important element of planning behaviour is the human’s
understanding of object transience. A human player intuitively
tracks which items he has collected from which areas of the map,
can easily estimate when they are scheduled to reappear, and
adjusts his strategy accordingly. To capture this, we introduce an
activation variable in the computation of the membership values;
inactive items are nullified, and the membership values are
redistributed among items which are still active:

∑=
−

−

= P

i i

p
p

isdoa

psdoa
sm

1
1

1

),()(

),()(
)(rr

rr

where a, the activation of an item, is 1 if the object o at the
terminal node of the path associated with prototype state p is
present, and 0 otherwise. See the Experiments section for an
illustration of the navigation system in operation.

Figure 3 - An example of a path followed by the player while
in a particular inventory state.

Figure 4 - Rewards (blue/red) and utilities (green/magenta)
assigned to this path, as represented by the y-axis.

2.4 Motion Modelling
As discussed earlier, the illusion created by even the most
intricate planning behaviours will be shattered if the agent is
observed to move in an unconvincing manner; it therefore
becomes imperative to implement a mechanism capable of
imitating the human player’s motion. To do so, we draw on the
theory of action primitives, as outlined by various researchers in
the field of robotic imitation and behavioural science [9] [10].
Action primitives are a basis set of modularised motor commands
which are sufficient, through combination operators, for
generating entire movement repertoires [11]. A means of deriving
such primitives from demonstration in Quake was first proposed
by Thurau et al [8]; we adopt the same approach, while modifying
it to suit our needs.
We first read the sequence of actions executed by the player at
each interval during the game session. In our current model, this
results in a set of four-dimensional vectors as shown below:

v = [yaw, pitch, fire, jump]
That is, the angular orientation of the player in each plane,
whether he is firing his weapon, and whether he is jumping. We
then cluster the set, thereby aggregating similar actions executed
at different times or locations, and reducing the data to a smaller
set of prototypical actions, otherwise known as primitives.
In order to reconstruct the human player’s motion, the agent must
also learn how to sequence these primitives. To this end, we
employ a series of probability functions similar to Thurau. In that
case, however, the primitives were used in isolation; they were
not underpinned by a dedicated navigation system. We must
therefore adapt the approach, such that the strategic planning
system outlined earlier is responsible for navigation around the
environment, and the motion modelling system is layered on top.
Since the player’s action depends on his current location in the
environment, the probability of executing a particular action
primitive vi when the agent is within the Voronoi region of node
wk in the topological map was originally written as

)()(kii wvPvP =

However, in our new model, this could lead to situations where an
incongruous primitive is chosen if the agent is currently at a node
with more than one possible successor; for instance, if the
navigation system chooses to move left, but the motion-modelling
system chooses a primitive which the player executed while
moving to the right. To constrain the motion model such that it
adheres to the paths chosen by the navigation system, we choose
primitives not based on the current node w, but rather on the edge
e along which the agent is travelling; that is,

)()(kii evPvP =

The conditional probabilities can be computed by re-examining
the recorded data. Each action in the training set can be associated
with an edge in the topological map, and it can be associated with
an action primitive. By counting the number of times a particular
action primitive is observed to be executed on a given edge, an m
x n matrix is formed where m is the number of edges and n is the
number of action primitives; the probabilities are then deduced by
simply normalising the rows of the matrix. An entry at position (k,
i) thus indicates the probability P(vi | ek) as above.

Of course, not every action primitive can be executed as the
successor of every other; there is a constrained ordering of
primitives which defines the behaviours exhibited by the player.
As such, it is necessary to define a condition which expresses the
probability of performing a particular action given the previously-
executed action:

)()(lii vvPvP =

where vl is the action which was executed on the last time step.
These probabilities are computed in a similar manner to the
above; an n x n transition matrix is constructed, and populated by
observing the sequence of actions from the demo. The overall
probability of executing action primitive i is therefore given as

∑∑ ==

== n

u kulu

kili
n

u klu

kli
i

evPvvP

evPvvP

evvP

evvP
vP

11
)()(

)()(

),(

),(
)(

Far from being a simple aesthetic effect, motion modelling also
has an important functional element. If the human player reached
a particular point in the level by performing some action other
than simply running (e.g. jumping), then the navigation system
alone will not be able to reach it. In other words, the goal-oriented
navigation system defines where the agent needs to go, while the
action primitives provide the means to get there. A good
illustration of this is outlined in Figure 6 below.

3. EXPERIMENTS
Having developed the behaviour model described above, we
proceeded to carry out a number of experiments to verify its
effectiveness. Experiments were designed to test both the goal-
oriented navigation and motion modeling systems, as well as
examining their interaction with one another.

3.1 Goal-Oriented Navigation
3.1.1 Pickup Sequences
To evaluate the agents’ ability to learn the human’s strategic
behaviour, we first conducted 150 separate tests on 30 sequences
of item pickups spanning four different game levels, some of
which incorporated environmental features such as interaction
with moving elevator platforms. For each set of five tests, the first
attempt placed the agent at the same starting position as the
player; the four subsequent tests placed the bot at a random
position along the sequence. When starting at the same location as
the player, the agent was expected to reproduce the exact
sequence of pickups. When starting at each of the random
positions, it was expected to attempt to reproduce the sequence if
possible; however, if its starting location caused it to collect an
object while en route to the first item in the sequence, the agent
was expected to deal with this unencountered situation
appropriately. Because these samples represented isolated pickup
sequences rather than continuous gameplay, the agent did not take
item respawns into account - this was tested separately on several
more extensive samples, as described later. Also, to account for
the random positioning of the agent, we made each internodal link
in the topological map bi-directional. For each test, the number of
seconds taken for the bot to complete its task was recorded, and
can be compared with the human player’s time. These results are
summarized below.

As can be seen, the agent successfully completed each task,
although with greatly varying times. When the agent starts at the
same point as the human, the times are generally quite similar; in
some cases, the agent actually manages to complete the collection
sequence faster than the human, since it will (as noted above)
ignore any non-goal-oriented movements present in the gameplay
sample. The larger deviations observed in the random tests are
due to the fact that the agent often started at around the midway
point of the sequence, requiring it to collect all subsequent items
before doubling-back to pick up the remainder. Some minor
issues were noted - very occasional repetition of paths, rough
motion between waypoints, both caused mostly by the artificial
addition of bidirectional edges - but overall the bot showed
impressive performance and adaptability to unseen circumstances.

3.1.2 Continuous Gameplay
While useful for a numerical comparison, however, these isolated
pickup sequences do not fully test the agent’s planning abilities. A
more instructive examination of its performance can be made by
supplying more extensive gameplay samples, wherein the player
is observed to cycle continuously around the map in accordance
with his changing state. We therefore trained the agent on four
extended demonstrations across two different levels, where the
human player had more scope to develop the kind of elaborate
strategy typically seen in a live game session. Here, the direction
in which the player traverses the map is often an important
element of his strategy, allowing him to collect weapons before
their relevant ammunition, or to build up armor reserves before
entering the open areas of the level; consequently, edges in the
topological map are taken as being unidirectional, except in cases
where the player was explicitly observed to move along them in
both directions. The objective-weighting and item transience
mechanisms resulted in the emergence of a noticeably more
complex, more involved long-term planning behaviour. Rather
than simply cycling the map from one pickup to the next, the

agents were instead observed to react dynamically to changes in
an object’s activation, to concentrate on areas of the map which
were favoured by the human player over the course of his
demonstration, and to give added significance to regions which
were more heavily populated with beneficial items. For instance,
in several samples the player was observed to first obtain a full
complement of weaponry, after which he would patrol specific
areas of the map which contained many of the most useful items;
the agent took this into account by concentrating on those same
areas throughout its test run.

The only issue noted during these tests was an occasional
‘indecisiveness’ at points where multiple paths intersected - that
is, the agent would sometimes move circuitously among several
neighbouring nodes, due to a small spike in the overlapping utility
values. In such cases, however, the impasse was quickly resolved
by the online discount, resulting in minimal disruption to the
agent’s movement.

Illustrative examples of the weighting and activation functions are
shown in Figure 5 below. It is important to note, however, that
these microcosmic examples are not as important on the wider
scale as they may first appear. While it is fortunate that some
items happened to respawn while the bot was in the vicinity, thus
providing some excellent demonstrations of the mechanisms
involved, the very fact that the agent was able to resolve these
reappearances in the short-term negates their long-term planning
importance. Additionally, although it is tempting to view the
agent’s behaviour as a response to immediate visual stimuli, it
bears re-stating that the agent is internally tracking the times at
which the inactive items are scheduled to respawn - it therefore
perceives these reappearances no differently than it does the
reactivation of items in other areas of the map. The more
significant implications of this mechanism occur when the agent
realizes that items at medium or greater distances from its current

 Dataset Player Bot (Same SP) Random 1 Random 2 Random 3 Random 4
Sample 1 24.8 14.2 25.4 36.7 23.6 20.1

Sample 6 12.0 11.8 16.1 15.3 21.4 18.1

Sample 7 15.8 10.8 11.1 10.8 12.6 15.9

Sample 9 79.2 51.0 76.9 72.1 61.3 76.9

M
ap 1: q2dm

1 Sample 10 60.8 47.1 46.8 71.7 50.9 72.5

Sample 11 32.8 43.1 56.0 68.7 58.2 65.7

Sample 12 35.6 45.3 44.7 50.4 70.8 45.5

Sample 13 28.4 37.3 42.9 48.7 56.7 44.5

Sample 18 54.4 20.6 31.2 22.7 20.4 37.2

Sample 19 20.8 12.7 43.3 12.9 43.5 20.7

M
aps 2-3: q2dm

5,7 Sample 20 50.4 29.3 76.9 31.0 33.4 31.2

Sample 21 20.0 17.3 15.8 13.5 11.2 12.2

Sample 22 38.4 51.3 43.0 40.1 59.8 47.4

Sample 26 20.2 24.6 22.8 22.7 30.2 24.0

Sample 27 28.8 37.9 55.8 35.2 35.6 52.1

M
ap 4: q2dm

8 Sample 30 24.8 29.6 28.3 30.0 34.0 35.1

position have respawned, leading it to adjust its long-term
strategic goals accordingly. A full gameplay example is shown
and briefly discussed in Figure 7, in the appendix.

3.2 Motion Modelling
In order to test the functional and aesthetic aspects of the motion-
modelling system, we ensured that the recorded demonstrations
adhered to certain criteria:
1. some items were collected specifically because they required

the human player to interact with the environment - that is, in
order to collect the same item, the agent would need to learn
and perform similar actions.

2. the human player exhibited certain behavioural traits in the
course of the recording; the agent was expected to adopt
similar mannerisms in its play.

In each case, the effectiveness of the motion-modelling system in
capturing the distinct style of the human’s play was observed.
Because the collection of items mentioned in point 1 above
requires the motion-modelling system to augment the standard
navigation system - for instance, by jumping across a chasm - the
experiments also test these systems’ ability to interact with one
another. Some examples of the resulting agent are illustrated in
Figure 6 below, which notes both the humanlike visual
appearance of the bot’s movement, and its ability to perform the
actions necessary to negotiate such environmental challenges.

4. CONCLUSION
 In this paper, we first described an approach to generating an
explicitly goal-oriented topological map from observation data.
We then proposed a modified value iteration approach as a means
of learning the paths traversed by the player, in order to find a
mapping from the player’s current state to his subsequent
strategy. We further outlined a mechanism based on fuzzy
clustering which allows the agent to pursue multiple weighted
goals in parallel. A system which imitates the human player’s
comprehension of object transience and his ability to dynamically

re-evaluate his current strategy was also presented. We then
discussed an approach to the extraction and sequencing of action
primitives, which allow the agent to manifest humanlike
idiosyncrasies as it pursues its strategic goals. Finally, a series of
experiments designed to demonstrate the model’s effectiveness
were described.

Agents were observed to very accurately convey the impression
of being a human rather than artificial player. In the short term,
the imitation of human motion - particularly such nuances as
visually examining an upcoming obstacle, which a computer-
controlled character would never need to do - gave strong
indicators that this was more than a simple AI player. In the
longer-term, the emergence of a cohesive, consistent strategy
further reinforced that initial view. Preliminary, informal
questioning of independent observers confirmed these findings;
we intend to fully verify this by conducting a detailed
believability study in the near future.

5. FUTURE WORK
One of the shortcomings of the current system is its inherently
disjoint nature - that is, the motion modeling system is layered on
top of the strategic-planning system, with no communication and
only minimal relation between them. The planning module picks
the next edge to traverse, and the motion module picks the actions
on that basis, with no regard for the agent’s condition or
objectives. While this does result in humanlike motion along
demonstrably strategic paths, it is far from ideal. We are therefore
investigating, in conjunction with Christian Thurau, an alternative
system based on Christian’s adaptation of Rao et al’s Bayesian
model of action sequencing [18]. This formulates the probability
of each action as a function of not only the previous action, but
also the current state and goal; it is therefore a natural fit for the
strategic system described here. Not only will this provide us with
a forward model to determine the next action to be executed, but
it will also act as an inverse model, allowing us to determine the
probability that the agent is pursuing each goal by simple
observation of its action sequence.

Figure 5 - Two sequences showing the objective-weighting and item transience mechanisms. Top, the agent (white circle) returns to a
previously-visited point before some ammo items (red circles) have respawned (1.1), and since they are inactive it initially passes by
(1.2); however, their sudden re-emergence (1.2) causes the utilities to reactivate, and the agent is drawn to collect them (1.3) before
continuing (1.4). In a different session, the agent is moving along a path (2.1) as a row of armour shards respawns behind it (2.2). It
reacts at once, turning around to collect the items (2.3), before resuming its course (2.4).

6. ACKNOWLEDGMENTS
This work is kindly sponsored by the Irish Research Council for
Science, Engineering and Technology’s EMBARK initiative.

7. REFERENCES
[1] Elkan, C. "Using the Triangle Inequality to Accelerate k-Means",

Proceedings of 20th ICML 2003

[2] Laird, J. E. and v. Lent, M. (2000). Interactive Computer Games:
Human-Level AI’s Killer App AAAI, 1171-1178

[3] C. Fairclough, M. Fagan, B. MacNamee, and P. Cunningham.
Research Directions for AI in Computer Games. TCD, 2001.

[4] A. Naraeyek. Computer Games - Boon or Bane for AI Research.
Künstliche Intelligenz, pages 43-44, February 2004

[5] D Charles, S McGlinchey, “The Past, Present and Future of Artificial
Neural Networks in Games”, CGAIDE 2004: p167

[6] S. Schaal. Is imitation learning the route to humanoid robots? Trends
in Cognitive Sciences, 3(6):233-242, 1999

[7] Thurau, C., C. Bauckhage & G. Sagerer 2004a: Learning Humanlike
Movement Behaviour for Computer Games, in Proc. 8th SAB Conf.

[8] Thurau, C., C. Bauckhage & G. Sagerer 2004b: Synthesising
Movement for Computer Games, in Pattern Recognition, Vol. 3175
of LCNS

[9] OC Jenkins and MJ Mataric, "Automated Derivation of Behavior
Vocabularies for Autonomous Humanoid Motion", Proceedings of
the Second AAMAS (2003)

[10] Thoroughman KA, Shadmehr R: Learning of action through adaptive
combination of motor primitives. Nature 407: 742-747

[11] A. Fod and M. Mataric and O. Jenkins: Automated Derivation of
Primitives for Movement Classification, Autonomous Robots,12 (1),
pp. 39--54, 2002

[12] R.W. Byrne, A.E. Russon, "Learning by Imitation: A Hierarchical
Approach", Behavioral & Brain Sciences 21

[13] J. E. Laird. Using a Computer Game to develop advanced AI, IEEE
Computer, pages 70 -75, July 2001.

[14] Wallace, SA, Laird, JE: Behavior Bounding: Toward Effective
Comparisons of Agents & Humans IJCAI 2003: 727-732

[15] Hollnagel, E. (1993) Human reliability analysis: Context and control.
London: Academic Press

[16] D Livingstone & S McGlinchey, “What Believability Testing Can
Tell Us”, Proceedings of CGAIDE 2004: p273

[17] T Hartley, Q Mehdi, N Gough, “Applying Markov Decision
Processes to 2D Real-Time Games”, CGAIDE 2004: p55-59

[18] RPN Rao, AP Shon, AN Meltzoff, “A Bayesian Model of Imitation
in Infants and Robots”, Cambridge University Press 2004

[19] J.E. Laird, J.C. Duchi, Creating human-like synthetic characters with
multiple skill-levels: a case study using the Soar quakebot, in:
Proceedings of the AAAI Fall Symposium Technical Report, 2000.

Figure 6 - Examples of the aesthetic (top) and functional (middle) aspects of the motion-modelling system; the bottom sequence
demonstrates a combination of both. The top sequence shows the agent leaning into and strafing around a corner, as a human player
does. In the middle, the agent’s next goal is an item on top of the box. As it approaches, it looks downwards, jumps, and fires a rocket
to propel itself upwards. This so-called rocket jump is considered an advanced move and is commonly employed by players to reach
inaccessible areas. Bottom, the agent interacts with a lift by standing still as it ascends (functional) and then jumping off at the top, an
unnecessary action which is nonetheless common among human players (aesthetic).

8. APPENDIX

Figure 7 - One of the continuous gameplay samples; the agent (red) successfully reproduced the observed behaviour (blue) -
including interaction with an elevating lift platform, represented by the vertical line in the centre of the visualisation - having
started at a different point (red diamond) than the demonstrator (blue diamond). Because of this, it was not possible to simply
reproduce the exact sequence of pickups - instead, the agent was forced to rely on its objective-weighting mechanism.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

